论文标题
Seamlessgan:自我监督的可质纹理图的合成
SeamlessGAN: Self-Supervised Synthesis of Tileable Texture Maps
论文作者
论文摘要
我们提出了Seamlessgan,该方法能够从单个输入示例中自动生成可覆盖的纹理图。与大多数现有方法相反,仅针对解决综合问题,我们的工作同时解决了问题,综合和润滑性。我们的关键思想是要意识到,在使用对抗扩展技术训练的生成网络中铺平一个潜在空间会在接缝交集处产生具有连续性的输出,然后可以通过裁剪中心区域来将其变成可砖瓦图像。由于潜在空间的每个值并不是有效产生高质量输出,因此我们利用歧视器作为一种感知误差指标,能够在采样过程中识别无伪影纹理。此外,与先前关于深层质地合成的工作相反,我们的模型被设计和优化,可与多层纹理表示形式合作,启用由多个地图组成的纹理,例如反照率,正态等。我们广泛测试了网络体系结构,损耗功能和采样参数的设计选择。我们在定性和定量上表明我们的方法优于以前的方法,并且适用于不同类型的纹理。
We present SeamlessGAN, a method capable of automatically generating tileable texture maps from a single input exemplar. In contrast to most existing methods, focused solely on solving the synthesis problem, our work tackles both problems, synthesis and tileability, simultaneously. Our key idea is to realize that tiling a latent space within a generative network trained using adversarial expansion techniques produces outputs with continuity at the seam intersection that can be then be turned into tileable images by cropping the central area. Since not every value of the latent space is valid to produce high-quality outputs, we leverage the discriminator as a perceptual error metric capable of identifying artifact-free textures during a sampling process. Further, in contrast to previous work on deep texture synthesis, our model is designed and optimized to work with multi-layered texture representations, enabling textures composed of multiple maps such as albedo, normals, etc. We extensively test our design choices for the network architecture, loss function and sampling parameters. We show qualitatively and quantitatively that our approach outperforms previous methods and works for textures of different types.