论文标题
涡旋晶格中的抗旋晶模式
Anti-Holomorphic Modes in Vortex Lattices
论文作者
论文摘要
关于稳定旋转晶格状态的线性化Helmholtz-Kirchoff点涡流动力学的连续理论是通过两种单独的方法开发的:首先是直接过程,其次是通过将Tkachenko的长波长限制用于三角形涡流晶格的精确解决方案。发现连续理论的解决方案是通过任意抗塑形函数描述的,并给出了幂律局部边缘模式。有限晶格的数值结果与该理论表现出极好的一致性。
A continuum theory of linearized Helmholtz-Kirchoff point vortex dynamics about a steadily rotating lattice state is developed by two separate methods: firstly by a direct procedure, secondly by taking the long-wavelength limit of Tkachenko's exact solution for a triangular vortex lattice. Solutions to the continuum theory are found, described by arbitrary anti-holomorphic functions, and give power-law localized edge modes. Numerical results for finite lattices show excellent agreement to the theory.