论文标题

完全非线性进化的良好的二阶包括

Well-posedness of a fully nonlinear evolution inclusion of second order

论文作者

Bacho, Aras

论文摘要

二阶非线性进化的包含方程的抽象\ textsc {cauchy}问题的拟定性\ t> 0,\\ u(0)= u_0,\ quad u'(0)= v_0 \ end {cases} \ end end {align*}在真正的可分离\ textsc {hilbert} space $ \ mathscr {hilbert} space $ \ mathscr {h h} $中ψ)} \ cap d(ψ),f \ in l^2(0,t; \ mathscr {h})$。功能性$ψ:\ Mathscr {h} \ rightarrow( - \ infty,+\ infty] $应该是适当的,较低的半连续性和convex和convex和nonlinear operator $ b:[0,t] \ times \ times \ times \ mathscr {h}条件。

The well-posedness of the abstract \textsc{Cauchy} problem for the doubly nonlinear evolution inclusion equation of second order \begin{align*} \begin{cases} u''(t)+\partial Ψ(u'(t))+B(t,u(t))\ni f(t), &\quad t\in (0,T),\, T>0,\\ u(0)=u_0, \quad u'(0)=v_0 \end{cases} \end{align*} in a real separable \textsc{Hilbert} space $\mathscr{H}$, where $u_0\in \mathscr{H}, v_0\in \overline{D(\partial Ψ)}\cap D(Ψ), f\in L^2(0,T;\mathscr{H})$. The functional $Ψ: \mathscr{H} \rightarrow (-\infty,+\infty]$ is supposed to be proper, lower semicontinuous, and convex and the nonlinear operator $B:[0,T]\times \mathscr{H}\rightarrow \mathscr{H}$ is supposed to satisfy a (local) \textsc{Lipschitz} condition. Existence and uniqueness of strong solutions $u\in H^2(0,T^*;\mathscr{H})$ as well as the continuous dependence of solutions from the data re shown by employing the theory of nonlinear semigroups and the Banach fixed-point theorem. If $B$ satisfies a local Lipschitz condition, then the existence of strong local solutions are obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源