论文标题

dapstep:堆栈跟踪错误表示的深度受让人预测

DapStep: Deep Assignee Prediction for Stack Trace Error rePresentation

论文作者

Sushentsev, Denis, Khvorov, Aleksandr, Vasiliev, Roman, Golubev, Yaroslav, Bryksin, Timofey

论文摘要

找到解决错误的最佳开发人员的任务称为Bug Triage。大多数现有方法将错误分类任务视为分类问题,但是,当类的集合随时间变化时,分类是不合适的(就像开发人员经常在项目中所做的那样)。此外,据我们所知,所有现有模型都使用文本源信息源,即,错误描述并不总是可用。 在这项工作中,当将堆栈跟踪用作错误报告的主要数据源时,我们探讨了现有解决方案对错误分类问题的适用性。此外,我们将这项任务重新制定为排名问题,并提出了新的深度学习模型来解决它。这些模型基于具有注意力和卷积神经网络的双向复发性神经网络,其权重使用排名损失函数进行了优化。为了提高排名的质量,我们建议使用版本控制系统注释中的其他信息。提出了两种方法,用于从注释中提取特征:手册和使用其他神经网络。为了评估我们的模型,我们收集了两个现实世界堆栈跟踪的数据集。我们的实验表明,所提出的模型优于适应堆栈轨迹的现有模型。为了促进该领域的进一步研究,我们发布了模型的源代码和收集的数据集之一。

The task of finding the best developer to fix a bug is called bug triage. Most of the existing approaches consider the bug triage task as a classification problem, however, classification is not appropriate when the sets of classes change over time (as developers often do in a project). Furthermore, to the best of our knowledge, all the existing models use textual sources of information, i.e., bug descriptions, which are not always available. In this work, we explore the applicability of existing solutions for the bug triage problem when stack traces are used as the main data source of bug reports. Additionally, we reformulate this task as a ranking problem and propose new deep learning models to solve it. The models are based on a bidirectional recurrent neural network with attention and on a convolutional neural network, with the weights of the models optimized using a ranking loss function. To improve the quality of ranking, we propose using additional information from version control system annotations. Two approaches are proposed for extracting features from annotations: manual and using an additional neural network. To evaluate our models, we collected two datasets of real-world stack traces. Our experiments show that the proposed models outperform existing models adapted to handle stack traces. To facilitate further research in this area, we publish the source code of our models and one of the collected datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源