论文标题
突触通信中的分子噪声
Molecular Noise In Synaptic Communication
论文作者
论文摘要
在突触分子通信(MC)中,神经递质(NTS)激活突触后受体(NTS)受随机反应扩散过程的控制。突触MC的这种随机性有助于突触后细胞中电化学下游信号的随机性,称为突触后膜电位(PSP)。由于PSP的随机性与神经计算和学习有关,因此表征PSP的统计数据至关重要。然而,由于NTS与受体的可逆双分子反应使系统非线性呈现,因此很难突触反应扩散过程的统计表征。因此,目前没有可用的模型来表征突触后受体激活对PSP的统计数据的影响。在这项工作中,我们根据化学主方程(CME)提出了一个新型的突触反应扩散过程的统计模型。我们进一步提出了一种新型的数值方法,该方法允许有效地计算CME,并使用此方法来表征PSP的统计数据。最后,我们提出了基于随机粒子的计算机模拟的结果,这些计算机模拟验证了所提出的模型。我们表明,控制突触传播的生物物理参数塑造了受体激活的自动助行,并最终是PSP的统计数据。我们的结果表明,突触后细胞对突触信号的处理有效地减轻了突触噪声,同时保留了突触信号的统计特征。本文介绍的结果有助于更好地理解突触信号传递对神经元信息处理的随机性的影响。
In synaptic molecular communication (MC), the activation of postsynaptic receptors by neurotransmitters (NTs) is governed by a stochastic reaction-diffusion process. This randomness of synaptic MC contributes to the randomness of the electrochemical downstream signal in the postsynaptic cell, called postsynaptic membrane potential (PSP). Since the randomness of the PSP is relevant for neural computation and learning, characterizing the statistics of the PSP is critical. However, the statistical characterization of the synaptic reaction-diffusion process is difficult because the reversible bi-molecular reaction of NTs with receptors renders the system nonlinear. Consequently, there is currently no model available which characterizes the impact of the statistics of postsynaptic receptor activation on the PSP. In this work, we propose a novel statistical model for the synaptic reaction-diffusion process in terms of the chemical master equation (CME). We further propose a novel numerical method which allows to compute the CME efficiently and we use this method to characterize the statistics of the PSP. Finally, we present results from stochastic particle-based computer simulations which validate the proposed models. We show that the biophysical parameters governing synaptic transmission shape the autocovariance of the receptor activation and, ultimately, the statistics of the PSP. Our results suggest that the processing of the synaptic signal by the postsynaptic cell effectively mitigates synaptic noise while the statistical characteristics of the synaptic signal are preserved. The results presented in this paper contribute to a better understanding of the impact of the randomness of synaptic signal transmission on neuronal information processing.