论文标题

来自印度股市选定领域的强大投资组合设计的精确股价预测

Precise Stock Price Prediction for Robust Portfolio Design from Selected Sectors of the Indian Stock Market

论文作者

Sen, Jaydip, S, Ashwin Kumar R, Joseph, Geetha, Muthukrishnan, Kaushik, Tulasi, Koushik, Varukolu, Praveen

论文摘要

股票价格预测是一项具有挑战性的任务,在该领域的文献中存在许多主张。投资组合建设是选择一组股票并最佳地对收益最大化的过程,同时最大程度地减少风险。自从马科维茨提出现代投资组合理论的那段时间以来,在建立有效的投资组合的领域发生了一些进步。如果投资者投资于有效的投资组合,并且可以通过估计投资组合的未来资产价值以高度的精确度来估算,则投资者可以从股票市场中获得最佳利益。在这个项目中,我们建立了一个有效的投资组合,并通过投资组合中股票的个别股票价格预测来预测未来的资产价值。作为建立高效投资组合的一部分,我们研究了以现代投资组合理论开头的多种投资组合优化方法。我们已经为所有五个五个领域的部门构建了最小差异组合和最佳风险投资组合,并在过去五年中使用过去的每日股票作为培训数据,并进行了返回测试以检查投资组合的性能。通过对重量投资组合的最小方差组合和最佳风险投资组合的比较研究是通过进行回测。

Stock price prediction is a challenging task and a lot of propositions exist in the literature in this area. Portfolio construction is a process of choosing a group of stocks and investing in them optimally to maximize the return while minimizing the risk. Since the time when Markowitz proposed the Modern Portfolio Theory, several advancements have happened in the area of building efficient portfolios. An investor can get the best benefit out of the stock market if the investor invests in an efficient portfolio and could take the buy or sell decision in advance, by estimating the future asset value of the portfolio with a high level of precision. In this project, we have built an efficient portfolio and to predict the future asset value by means of individual stock price prediction of the stocks in the portfolio. As part of building an efficient portfolio we have studied multiple portfolio optimization methods beginning with the Modern Portfolio theory. We have built the minimum variance portfolio and optimal risk portfolio for all the five chosen sectors by using past daily stock prices over the past five years as the training data, and have also conducted back testing to check the performance of the portfolio. A comparative study of minimum variance portfolio and optimal risk portfolio with equal weight portfolio is done by backtesting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源