论文标题
通过跳过连接和混合学习,激光雷达语义分割中的域适应性
Domain Adaptation in LiDAR Semantic Segmentation via Alternating Skip Connections and Hybrid Learning
论文作者
论文摘要
在本文中,我们解决了激光雷达语义细分中域适应性的具有挑战性的问题。我们考虑从源域和目标域和一些标记和许多未标记示例的目标域的完全标记的数据集的设置。我们提出了一个域适应框架,该框架减轻了域转移问题,并在目标域上产生了吸引人的绩效。为此,我们开发了一个基于GAN的图像到图像翻译引擎,该引擎具有带有交替连接的发电机,并将其与最先进的激光雷达语义分割网络相结合。我们的框架本质上是混合的,因为我们的模型学习是由自学,半佩斯维斯和无监督的学习组成的。基准激光雷达语义分割数据集的广泛实验表明,与强质基础和先前的艺术相比,我们的方法具有出色的性能。
In this paper we address the challenging problem of domain adaptation in LiDAR semantic segmentation. We consider the setting where we have a fully-labeled data set from source domain and a target domain with a few labeled and many unlabeled examples. We propose a domain adaption framework that mitigates the issue of domain shift and produces appealing performance on the target domain. To this end, we develop a GAN-based image-to-image translation engine that has generators with alternating connections, and couple it with a state-of-the-art LiDAR semantic segmentation network. Our framework is hybrid in nature in the sense that our model learning is composed of self-supervision, semi-supervision and unsupervised learning. Extensive experiments on benchmark LiDAR semantic segmentation data sets demonstrate that our method achieves superior performance in comparison to strong baselines and prior arts.