论文标题

在渐近反DE的空间中的波动的量规不变的独特延续标准

A gauge-invariant unique continuation criterion for waves in asymptotically Anti-de Sitter spacetimes

论文作者

Chatzikaleas, Athanasios, Shao, Arick

论文摘要

我们重新考虑了形式的一般性klein-gordon方程的一般类别的唯一延续属性{align*} \ box _ {g} ϕ+σdation= \ mathcal {g}(g}(ϕ,\ nabla ϕ)渐近的反DE保姆空间。特别是,我们旨在概括Holzegel,McGill和第二作者的先前结果[14,15,24](通过以下方式,通过新颖的Carleman估计,通过新颖的Carleman估计,建立了上述独特的延续性属性)以下方式:(1)我们在所谓的无效标准上建立了键的范围(1),以建立键的范围(以24的键合)(以24的形式建立),以建立24个键值(24)标准也是规格不变的。 (2)我们的新独特的延续属性可以从保形边界上的较大,更一般的域中应用。 (3)与[24]类似,我们将广义无凸度标准的失败与保形边界附近某些无效的大地测量学的存在联系起来。这些大地测量学可用于构建反示例以进行独特的延续。最后,我们的规格不变标准和Carleman估计将构成一个关键因素,以证明整个非线性Einstein-Vacuum方程的独特延续结果,这将在即将发表的Holzegel和第二作者的论文中解决[16]。

We reconsider the unique continuation property for a general class of tensorial Klein-Gordon equations of the form \begin{align*} \Box_{g} ϕ+ σϕ= \mathcal{G}(ϕ,\nabla ϕ) \text{,} \qquad σ\in \mathbb{R} \end{align*} on a large class of asymptotically anti-de Sitter spacetimes. In particular, we aim to generalize the previous results of Holzegel, McGill, and the second author [14,15,24] (which established the above-mentioned unique continuation property through novel Carleman estimates near the conformal boundary) in the following ways: (1) We replace the so-called null convexity criterion (the key geometric assumption on the conformal boundary needed in [24] to establish the unique continuation properties) by a more general criterion that is also gauge invariant. (2) Our new unique continuation property can be applied from a larger, more general class of domains on the conformal boundary. (3) Similar to [24], we connect the failure of our generalized null convexity criterion to the existence of certain null geodesics near the conformal boundary. These geodesics can be used to construct counterexamples to unique continuation. Finally, our gauge-invariant criterion and Carleman estimate will constitute a key ingredient in proving unique continuation results for the full nonlinear Einstein-vacuum equations, which will be addressed in a forthcoming paper of Holzegel and the second author [16].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源