论文标题

基于聚类的关节通道估计和NOMA信号检测的设计和分析

Design and Analysis of Clustering-based Joint Channel Estimation and Signal Detection for NOMA

论文作者

Salari, Ayoob, Shirvanimoghaddam, Mahyar, Shahab, Muhammad Basit, Arablouei, Reza, Johnson, Sarah

论文摘要

我们建议使用无监督的机器学习为上行链路非正交多访问(NOMA)提出联合通道估计和信号检测方法。我们应用高斯混合模型(GMM)来聚集接收的信号,因此优化了决策区域以提高符号错误率(SER)性能。我们表明,当接收到的用户的功能完全不同时,提出的基于聚类的方法与具有完整的通道状态信息(CSI)的常规最大可能性检测器(MLD)的表现达到了SER性能。我们研究了所提出的方法的准确性与区块长度之间的权衡,因为使用的聚类算法的准确性取决于接收器可用的符号数量。我们对所提出的方法进行了全面的性能分析,并在其SER绩效上得出了理论上的界限。我们的仿真结果证实了所提出的方法的有效性,并验证计算出的理论结合可以很好地预测所提出方法的SER性能。我们进一步探讨了所提出的方法在无授予的NOMA场景中的应用,并表明其性能非常接近具有完整CSI的最佳MLD,通常需要长时间的试点序列。

We propose a joint channel estimation and signal detection approach for the uplink non-orthogonal multiple access (NOMA) using unsupervised machine learning. We apply a Gaussian mixture model (GMM) to cluster the received signals, and accordingly optimize the decision regions to enhance the symbol error rate (SER) performance. We show that, when the received powers of the users are sufficiently different, the proposed clustering-based approach achieves an SER performance on a par with that of the conventional maximum-likelihood detector (MLD) with full channel state information (CSI). We study the tradeoff between the accuracy of the proposed approach and the blocklength, as the accuracy of the utilized clustering algorithm depends on the number of symbols available at the receiver. We provide a comprehensive performance analysis of the proposed approach and derive a theoretical bound on its SER performance. Our simulation results corroborate the effectiveness of the proposed approach and verify that the calculated theoretical bound can predict the SER performance of the proposed approach well. We further explore the application of the proposed approach to a practical grant-free NOMA scenario, and show that its performance is very close to that of the optimal MLD with full CSI, which usually requires long pilot sequences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源