论文标题

一般图表上具有隐私性的最大匹配及其应用程序以启用隐私肾脏交换

Privacy-Preserving Maximum Matching on General Graphs and its Application to Enable Privacy-Preserving Kidney Exchange

论文作者

Breuer, Malte, Meyer, Ulrike, Wetzel, Susanne

论文摘要

直到今天,在某些国家 /地区,在多个不兼容的患者唐纳对之间的肾脏交换受法律的限制。通常,在这种情况下,制定了法律法规,以禁止强制和操纵以防止市场贸易市场。但是,在实践肾脏交换的国家中,现有的平台来促进此类交流通常缺乏足够的隐私机制。在本文中,我们提出了一种针对肾脏交易所的隐私协议,该协议不仅解决了现有平台的隐私问题,而且还旨在领导那些仍未实行肾脏交易所的国家,以克服法律问题。在我们的方法中,我们使用秘密共享的概念将患者和捐助者的医疗数据分配给以隐私性的方式。然后,这些计算同行彼此之间执行我们新的安全多方计算(SMPC)协议,以确定一组最佳的肾脏交换集。作为我们新协议的一部分,我们为一般图表上的最大匹配问题设计了一个隐私解决方案。我们已经在SMPC基准测试框架MP-SPDZ中实现了协议,并提供了全面的性能评估。此外,我们根据来自联合器官共享网络的数据集在动态环境中(随着时间的流逝和捐助者到达)时分析协议的实用性。

To this day, there are still some countries where the exchange of kidneys between multiple incompatible patient-donor pairs is restricted by law. Typically, legal regulations in this context are put in place to prohibit coercion and manipulation in order to prevent a market for organ trade. Yet, in countries where kidney exchange is practiced, existing platforms to facilitate such exchanges generally lack sufficient privacy mechanisms. In this paper, we propose a privacy-preserving protocol for kidney exchange that not only addresses the privacy problem of existing platforms but also is geared to lead the way in overcoming legal issues in those countries where kidney exchange is still not practiced. In our approach, we use the concept of secret sharing to distribute the medical data of patients and donors among a set of computing peers in a privacy-preserving fashion. These computing peers then execute our new Secure Multi-Party Computation (SMPC) protocol among each other to determine an optimal set of kidney exchanges. As part of our new protocol, we devise a privacy-preserving solution to the maximum matching problem on general graphs. We have implemented the protocol in the SMPC benchmarking framework MP-SPDZ and provide a comprehensive performance evaluation. Furthermore, we analyze the practicality of our protocol when used in a dynamic setting (where patients and donors arrive and depart over time) based on a data set from the United Network for Organ Sharing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源