论文标题

永恒的顶点覆盖码最大外平图的数量

Eternal vertex cover number of maximal outerplanar graphs

论文作者

Babu, Jasine, Krishnan, K. Murali, Prabhakaran, Veena, Warrier, Nandini J.

论文摘要

永恒的顶点覆盖问题是经典顶点盖问题的变体,该问题模型为两名玩家攻击者攻击者游戏。众所周知,计算永恒的顶点覆盖码通常是NP - hard,并且二分图的问题的复杂性状态是打开的。有一种二次复杂性算法以弦图而闻名。最大外平面图构成了弦图的子类,为此,没有算法的次级时间复杂性。在本文中,我们获得了线性时间的递归算法,用于计算永恒的顶点覆盖量最大外平面图的覆盖量。

Eternal vertex cover problem is a variant of the classical vertex cover problem modeled as a two player attacker-defender game. Computing eternal vertex cover number of graphs is known to be NP-hard in general and the complexity status of the problem for bipartite graphs is open. There is a quadratic complexity algorithm known for this problem for chordal graphs. Maximal outerplanar graphs forms a subclass of chordal graphs, for which no algorithm of sub-quadratic time complexity is known. In this paper, we obtain a recursive algorithm of linear time for computing eternal vertex cover number of maximal outerplanar graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源