论文标题
寒冷费米原子气体中BEC/BCS跨界的Grassmann相空间理论
Grassmann Phase Space Theory for the BEC/BCS Crossover in Cold Fermionic Atomic Gases
论文作者
论文摘要
格拉曼(Grassmann阶段空间理论(GSPT))应用于冷效费原子气体中的BEC/BCS跨界,并用于确定量子相关函数的演变(在时间或温度上)(QCF)的演变(QCF),这些函数(QCF)指定:(a)在单个合作者配对中旋转和旋转两次缝制的福特原子的位置,并旋转两次福特原子(B)的位置(b)。这些QCF中的第一个与描述库珀对大小的变化有关,因为Fermion-Fermion耦合常数通过Feshbach共振方法通过从BEC侧的小型库珀对到BCS侧的大库珀对的交叉来更改。这些QCF中的第二个对于描述两个库珀对的费米原子位置之间的相关性很重要,这在交叉的BEC或BCS两侧有望很小,但预计在强烈的互动单位状态下,库珀对的大小与库珀对之间的分离相当。在GPST中,QCF最终是通过格拉斯曼随机动量场的随机平均值给出的,而GPST表明,格拉斯曼随机动量场在以后的时间(或较低温度)的随机平均值与较早的时间(或更高的温度)的随机平均(或较低的温度)在一个较早的温度(或较高的温度)中(以及在一个较高的温度下),并且该温度与更高的温度相关(以及该元素),并且该温度与较高的温度相关(以及该元素),并且该元素与较高的温度相关(或C数。这些矩阵元素的表达式已经通过分析获得,与较小的时间或温度增加相对应,提供了计划在未来出版的进化的数值研究所需的公式。考虑了各种初始条件,包括在零温度和高温气体下进行非相互作用的费米斯气体的条件。
Grassmann Phase Space Theory (GSPT) is applied to the BEC/BCS crossover in cold fermionic atomic gases and used to determine the evolution (over either time or temperature) of the Quantum Correlation Functions (QCF) that specify: (a) the positions of the spin up and spin down fermionic atoms in a single Cooper pair and (b) the positions of the two spin up and two spin down fermionic atoms in two Cooper pairs The first of these QCF is relevant to describing the change in size of a Cooper pair, as the fermion-fermion coupling constant is changed via Feshbach resonance methods through the crossover from a small Cooper pair on the BEC side to a large Cooper pair on the BCS side. The second of these QCF is important for describing the correlations between the positions of the fermionic atoms in two Cooper pairs, which is expected to be small at the BEC or BCS sides of the crossover, but is expected to be significant in the strong interaction unitary regime, where the size of a Cooper pair is comparable to the separation between Cooper pairs. In GPST the QCF are ultimately given via the stochastic average of products of Grassmann stochastic momentum fields, and GPST shows that the stochastic average of the products of Grassmann stochastic momentum fields at a later time (or lower temperature) is related linearly to the stochastic average of the products of Grassmann stochastic momentum fields at an earlier time (or higher temperature), and that the matrix elements involved in the linear relations are all c-numbers. Expressions for these matrix elements corresponding to a small time or temperature increment have been obtained analytically, providing the formulae needed for numerical studies of the evolution that are planned for a future publication. Various initial conditions are considered, including those for a non-interacting fermionic gas at zero temperature and a high temperature gas.