论文标题
混合无谐电势井
Mixing in an anharmonic potential well
论文作者
论文摘要
我们证明了用于集成系统的Liouville方程的解决方案的相空间混合。在自然的非谐波条件下,我们获得了分布函数的弱收敛性,利率$ \ langle \ mathrm {time} \ rangle^{ - 1} $。在一个维度上,我们还研究了这种情况以某种能量失败的情况,表明混合仍然成立,但速率较慢。当条件保持且功能具有较高的规律性时,速率可以更快。
We prove phase-space mixing for solutions to Liouville's equation for integrable systems. Under a natural non-harmonicity condition, we obtain weak convergence of the distribution function with rate $\langle \mathrm{time} \rangle^{-1}$. In one dimension, we also study the case where this condition fails at a certain energy, showing that mixing still holds but with a slower rate. When the condition holds and functions have higher regularity, the rate can be faster.