论文标题

全球双边地缘政治互动网络从国家纪律概况推断出来

Worldwide bilateral geopolitical interactions network inferred from national disciplinary profiles

论文作者

Izzo, Maria Grazia, Daraio, Cinzia, Leuzzi, Luca, Quaglia, Giammarco, Ruocco, Giancarlo

论文摘要

一个国家的纪律处分被定义为零件,其组成部分是给定学科中产生的文章数量,使该国的整体生产分开。从主题领域的基本科学指标(ESI)构图开始,我们获得了全球图的年度纪律概况,每个节点上的每个节点都位于一个国家,在两个时间间隔[1980-1988]和[1992-2017]中,伯林壁的倒塌是水。我们分析了纪律概况的时间序列的经验成对互相关矩阵。与随机矩阵理论的对比证明,除了测量噪声外,经验互相关矩阵还带来了真实的信息。由香农定理作为与测量成对相关性一致的最低结构模型引起的,可以通过与广义$ n_d $二维的Heisenberg模型相关的Boltzmann分布来描述纪律概况的平稳概率分布。已经推断出了海森堡模型的网络交互集,并应用了两种聚类方法,即层次聚类和主成分分析。在地缘政治平面上,这允许根据物理建模获得全球双边相互作用的表征。一个简单的地缘政治分析揭示了获得的结果的一致性,并促进了更深入的历史分析。为了获得最佳的成对相互作用集,我们使用了伪样方法。我们通过分析计算伪样及其梯度。分析计算值得对任何推断贝叶斯问题的问题引起关注,涉及$ n_d $二维的Heisenberg模型。

A disciplinary profile of a country is defined as the versor whose components are the numbers of articles produced in a given discipline divided the overall production of the country. Starting from the Essential Science Indicators (ESI) schema of classification of subject area, we obtained the yearly disciplinary profiles of a worldwide graph, where on each node sits a country, in the two time intervals [1980-1988] and [1992-2017], the fall of the Berlin Wall being the watershed. We analyse the empirical pairwise cross-correlation matrices of the time series of disciplinary profiles. The contrast with random matrix theory proves that, beyond measurement noise, the empirical cross-correlation matrices bring genuine information. Arising from the Shannon theorem as the least-structured model consistent with the measured pairwise correlations, the stationary probability distribution of disciplinary profiles can be described by a Boltzmann distribution related to a generalized $n_d$-dimensional Heisenberg model. The set of network interactions of the Heisenberg model have been inferred and to it they have been applied two clusterization methods, hierarchical clustering and principal component analysis. On a geopolitical plane this allow to obtain a characterization of the worldwide bilateral interactions based on physical modeling. A simple geopolitical analysis reveals the consistency of the results obtained and gives a boost to deeper historical analysis. In order to obtain the optimal set of pairwise interactions we used a Pseudo-Likelihood approach. We analytically computed the Pseudo-Likelihood and its gradient. The analytical computations deserve interest in whatever inference Bayesian problem involving a $n_d$-dimensional Heisenberg model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源