论文标题
非连接的布朗振荡器
Nonergodic Brownian oscillator
论文作者
论文摘要
我们考虑与非马克维亚热浴接触的开放(布朗)经典谐波振荡器,并由广义的langevin方程描述。当浴室的频谱具有有限的上截止频率时,振荡器可能具有千古和非连接构型。在厄尔贡构型中(存在时,它们对应于较低的振荡器频率),振荡器表现出常规的放松与浴缸的热平衡。在非连接构型(对应于较高振荡器频率)中,振荡器通常不会热化,而是放松到定期相关的统计量在时间上变化的周期性相关(环固化)状态。对于Langevin方程中的特定耗散内核,我们评估明确相关的放松函数,以描述平均值和时间相关的演变。当振荡器频率从较低的值转换为较高值时,振荡器可能会显示出具有平衡初始和循环式最终状态的非迫使转变的参数段落。这些过渡显示出类似于第二类的相变。
We consider an open (Brownian) classical harmonic oscillator in contact with a non-Markovian thermal bath and described by the generalized Langevin equation. When the bath's spectrum has a finite upper cutoff frequency, the oscillator may have ergodic and nonergodic configurations. In ergodic configurations (when exist, they correspond to lower oscillator frequencies) the oscillator demonstrates conventional relaxation to thermal equilibrium with the bath. In nonergodic configurations (which correspond to higher oscillator frequencies) the oscillator in general does not thermalize, but relaxes to periodically correlated (cyclostationary) states whose statistics vary periodically in time. For a specific dissipation kernel in the Langevin equation, we evaluate explicitly relevant relaxation functions, which describe the evolution of mean values and time correlations. When the oscillator frequency is switched from a lower value to higher one, the oscillator may show parametric ergodic to nonergodic transitions with equilibrium initial and cyclostationary final states. These transitions are shown to resemble phase transitions of the second kind.