论文标题

用于动态切片配置的智能服务群集

Smart Service-Oriented Clustering for Dynamic Slice Configuration

论文作者

Taleb, T., Bensalem, D. E., Laghrissi, A.

论文摘要

预计第五代(5G)及以后的无线网络可以完全自动化的方式运行,以实现超短缺延迟的承诺,满足指数的资源需求,并提供最终用户预期的经验质量(QOE)。在此类环境中所涉及的成分中,网络切片能够创建量身定制的逻辑网络,以支持特定的应用程序需求(即服务水平协议SLA,服务质量QoS等)在物理基础架构之上。这创造了需要收集有关用户服务消耗的时空信息,确定有意义的见解和模式的机制,利用机械学习技术。在这种情况下,我们的论文提出了一个被称为“ SCOLFOR”的框架,当消耗增强的移动宽带(EMBB)应用程序,物联网(IoT)服务(IoT)服务以及无人驾驶汽车服务(UAVS)时,用户(即人,传感器等)的面向服务的聚类和分析(即人,传感器等)。 SOCL主要依赖于现实的网络仿真框架“网络slice planne”(NSP),而两种聚类方法,即K-均值和分层聚类。获得的结果展示了有趣的功能,突出了所提出的框架的好处。

The fifth generation (5G) and beyond wireless networks are foreseen to operate in a fully automated manner, in order to fulfill the promise of ultra-short latency, meet the exponentially increasing resource requirements, and offer the quality of experience (QoE) expected from end-users. Among the ingredients involved in such environments, network slicing enables the creation of logical networks tailored to support specific application demands (i.e., service level agreement SLA, quality of service QoS, etc.) on top of physical infrastructure. This creates the need for mechanisms that can collect spatiotemporal information on users'service consumption, and identify meaningful insights and patterns, leveraging machinelearning techniques. In this vein, our paper proposes a framework dubbed"SOCLfor" the Service Oriented CLustering, analysis and profiling of users (i.e., humans, sensors, etc.) when consuming enhanced Mobile BroadBand (eMBB) applications, internet of things (IoT) services, and unmanned aerial vehicles services (UAVs). SOCL relies mainly on the realistic network simulation framework"network slice planne"(NSP), and two clustering methods namely K-means and hierarchical clustering. The obtained results showcase interesting features, highlighting the benefit of the proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源