论文标题
高功率激光实验在静止的磁化均匀等离子体中形成超临界的无碰撞冲击
High-power laser experiment forming a supercritical collisionless shock in a magnetized uniform plasma at rest
论文作者
论文摘要
我们提出了一种新的实验方法,以产生准垂直超临界磁性无碰撞冲击。在我们的实验中,环境氮(N)等离子体处于静止状态且磁化良好,并且具有均匀的质量密度。血浆由激光驱动的消融铝(AL)等离子体推动。条纹的光学增形法和空间分辨的激光集体汤森散射澄清了等离子体密度和温度的结构,这些结构与一维粒子中的粒子中的模拟进行了比较。据表明,在激光辐照后,Al血浆被自生成的Biermann电池场磁化,而血浆拍打入射N等离子体。 N等离子体中的压缩外场反映了N离子,从而导致反向流动的N流。即,我们确定反射n离子的边缘。这种相互作用的等离子体形成了磁化无碰撞冲击。
We present a new experimental method to generate quasi-perpendicular supercritical magnetized collisionless shocks. In our experiment, ambient nitrogen (N) plasma is at rest and well-magnetized, and it has uniform mass density. The plasma is pushed by laser-driven ablation aluminum (Al) plasma. Streaked optical pyrometry and spatially resolved laser collective Thomson scattering clarify structures of plasma density and temperatures, which are compared with one-dimensional particle-in-cell simulations. It is indicated that just after the laser irradiation, the Al plasma is magnetized by a self-generated Biermann battery field, and the plasma slaps the incident N plasma. The compressed external field in the N plasma reflects N ions, leading to counter-streaming magnetized N flows. Namely we identify the edge of the reflected N ions. Such interacting plasmas form a magnetized collisionless shock.