论文标题

非权利主义系统中的手性异常:浆果曲率和手性动力学理论

Chiral anomaly in non-relativistic systems: Berry curvature and chiral kinetic theory

论文作者

Gao, Lan-Lan, Huang, Xu-Guang

论文摘要

手性异常和它引起的新型量子现象已被广泛研究用于狄拉克和韦尔葬礼。在大多数典型情况下,假定Lorentz协方差,因此保持线性分散关系。但是,在逼真的材料(例如狄拉克和Weyl半法)中,非线性分散关系自然而然。我们开发了一个动力学框架,通过使用Wigner函数和半经典运动方程的方法来研究具有非线性分散体的Weyl Fermions的手性异常。在此框架中,手性异常是由浆果单孔在动量空间中采购的,由于浆果单极的绕组,可以增强或抑制。我们的结果可以帮助理解非权利主义系统中手性异常引起的转运现象。

Chiral anomaly and the novel quantum phenomena it induces have been widely studied for Dirac and Weyl fermions. In most typical cases, the Lorentz covariance is assumed and thus the linear dispersion relations are maintained. However, in realistic materials, such as Dirac and Weyl semimetals, the non-linear dispersion relations appear naturally. We develop a kinetic framework to study the chiral anomaly for Weyl fermions with non-linear dispersions by using the methods of Wigner function and semi-classical equations of motion. In this framework, the chiral anomaly is sourced by Berry monopoles in momentum space and could be enhanced or suppressed due to the windings around the Berry monopoles. Our results can help understand the chiral anomaly-induced transport phenomena in non-relativistic systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源