论文标题

在野外学习四足动物机器人的强大感知运动

Learning robust perceptive locomotion for quadrupedal robots in the wild

论文作者

Miki, Takahiro, Lee, Joonho, Hwangbo, Jemin, Wellhausen, Lorenz, Koltun, Vladlen, Hutter, Marco

论文摘要

可以在偏远和危险环境中自动运行的腿部机器人将大大增加探索未经探索区域的机会。外部感受感受对于快速和节能的运动至关重要:在与IT接触之前,感知地形可以使步态提前计划和适应步态以保持速度和稳定性。然而,在机器人技术中,强烈地利用外观感知感知感受仍然是一个巨大的挑战。雪,植被和水在视觉上是机器人无法踩踏的障碍物,或者由于高反射率而完全缺失。此外,由于困难的照明,灰尘,雾,反射性或透明表面,传感器遮挡等,深度感知会降低。因此,迄今为止,最强大,最坚固的解决方案仅依赖于本体感受。这严重限制了运动速度,因为机器人必须在相应地调整步态之前就身体上感觉到地形。在这里,我们提出了一个强大而一般的解决方案,用于整合腿部运动的外部感受和本体感受感知。我们利用基于注意力的复发编码器,该编码器整合了本体感受和外部感受的输入。编码器是端到端训练的,并学会了无缝地结合不同的感知方式,而无需诉诸启发式方法。结果是一个具有高稳健性和速度的腿部运动控制器。该控制器在多个季节内在各种具有挑战性的自然和城市环境中进行了测试,并在人类徒步旅行者推荐的时间内完成了一个小时的阿尔卑斯山远足。

Legged robots that can operate autonomously in remote and hazardous environments will greatly increase opportunities for exploration into under-explored areas. Exteroceptive perception is crucial for fast and energy-efficient locomotion: perceiving the terrain before making contact with it enables planning and adaptation of the gait ahead of time to maintain speed and stability. However, utilizing exteroceptive perception robustly for locomotion has remained a grand challenge in robotics. Snow, vegetation, and water visually appear as obstacles on which the robot cannot step~-- or are missing altogether due to high reflectance. Additionally, depth perception can degrade due to difficult lighting, dust, fog, reflective or transparent surfaces, sensor occlusion, and more. For this reason, the most robust and general solutions to legged locomotion to date rely solely on proprioception. This severely limits locomotion speed, because the robot has to physically feel out the terrain before adapting its gait accordingly. Here we present a robust and general solution to integrating exteroceptive and proprioceptive perception for legged locomotion. We leverage an attention-based recurrent encoder that integrates proprioceptive and exteroceptive input. The encoder is trained end-to-end and learns to seamlessly combine the different perception modalities without resorting to heuristics. The result is a legged locomotion controller with high robustness and speed. The controller was tested in a variety of challenging natural and urban environments over multiple seasons and completed an hour-long hike in the Alps in the time recommended for human hikers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源