论文标题

避免模​​式和大惊

Pattern-avoidance and Fuss-Catalan numbers

论文作者

Alexandersson, Per, Fufa, Samuel Asefa, Getachew, Frether, Qiu, Dun

论文摘要

我们研究了一部分排列,其中条目仅限于与索引相同的剩余,modulo一些整数$ k \ geq 2 $。我们表明,当对排列施加经典的132-或213避免限制时,我们会恢复大惊小怪的 - 卡塔兰数字和一些raney数字的特殊情况。 出乎意料的是,当我们对加泰罗尼亚州次要功能的加泰罗尼亚家族施加mod $ k $限制时,也有类似的声明。 最后,我们完全列举了mod- $ k $偏置排列的所有组合,避免了两种长度3的模式。这与Simion和Schmidt的系统研究类似,避免了两种长度3的模式。

We study a subset of permutations, where entries are restricted to having the same remainder as the index, modulo some integer $k \geq 2$. We show that when also imposing the classical 132- or 213-avoidance restriction on the permutations, we recover the Fuss--Catalan numbers and some special cases of the Raney numbers. Surprisingly, an analogous statement also holds when we impose the mod $k$ restriction on a Catalan family of subexcedant functions. Finally, we completely enumerate all combinations of mod-$k$-alternating permutations, avoiding two patterns of length 3. This is analogous to the systematic study by Simion and Schmidt, of permutations avoiding two patterns of length 3.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源