论文标题
使用人工神经网络的宇宙黎明21-CM功率谱和多余无线电模型的分类的仿真
Emulation of the Cosmic Dawn 21-cm Power Spectrum and Classification of Excess Radio Models Using an Artificial Neural Network
论文作者
论文摘要
预计下一代射电望远镜将详细测量宇宙21厘米氢。未来21-CM调查的庞大数据集将彻底改变我们对早期宇宙时代的理解。我们提出了一种基于人工神经网络的机器学习方法,该方法使用仿真来揭示电离和宇宙黎明时代的天体物理学。使用七个参数的天体物理模型,该模型涵盖了非常广泛的21厘米信号,在6至30范围内的红移范围内,波恩伯范围$ 0.05 $至$ 1 \ \ \ \ \ \ \ \ \ \ \ rm {mpc}^{ - 1} $,我们以典型的精度为典型的Power Spertrum,以$ 10-20 \%的$ 10-20 \%$ $ \%$ 10- \%。作为一个现实的例子,我们使用平方公里阵列(SKA)的乐观噪声模型训练模拟器。适合模拟SKA数据的典型测量准确度的光学深度为$ 2.8 \%$,在宇宙微波背景中,银河系晕的星形成效率的$ 34 \%$,在银河系卤代X射线效率中的恒星形成效率为9.6。同样,通过我们的建模,我们从模拟SKA数据中重建了真正的21厘米功率谱,典型的精度为$ 15-30 \%$。除了标准的天体物理模型外,我们还考虑了高红移时强烈的无线电背景的两种异国情调。我们使用神经网络来识别21厘米功率谱中存在的无线电背景类型,用于模拟SKA数据的精度为$ 87 \%$。
The cosmic 21-cm line of hydrogen is expected to be measured in detail by the next generation of radio telescopes. The enormous dataset from future 21-cm surveys will revolutionize our understanding of early cosmic times. We present a machine learning approach based on an Artificial Neural Network that uses emulation in order to uncover the astrophysics in the epoch of reionization and cosmic dawn. Using a seven-parameter astrophysical model that covers a very wide range of possible 21-cm signals, over the redshift range 6 to 30 and wavenumber range $0.05$ to $1 \ \rm{Mpc}^{-1}$ we emulate the 21-cm power spectrum with a typical accuracy of $10 - 20\%$. As a realistic example, we train an emulator using the power spectrum with an optimistic noise model of the Square Kilometre Array (SKA). Fitting to mock SKA data results in a typical measurement accuracy of $2.8\%$ in the optical depth to the cosmic microwave background, $34\%$ in the star-formation efficiency of galactic halos, and a factor of 9.6 in the X-ray efficiency of galactic halos. Also, with our modeling we reconstruct the true 21-cm power spectrum from the mock SKA data with a typical accuracy of $15 - 30\%$. In addition to standard astrophysical models, we consider two exotic possibilities of strong excess radio backgrounds at high redshifts. We use a neural network to identify the type of radio background present in the 21-cm power spectrum, with an accuracy of $87\%$ for mock SKA data.