论文标题

符合性动量神经网络 - 使用离散的变分性力学作为深度学习的先验

Symplectic Momentum Neural Networks -- Using Discrete Variational Mechanics as a prior in Deep Learning

论文作者

Santos, Saul, Ekal, Monica, Ventura, Rodrigo

论文摘要

随着深度学习从研究界引起人们对实际物理系统的预测和控制的关注,学习重要的表征比以往任何时候都变得更加强制性。深度学习表征与物理学一致是至关重要的。但是,从离散数据中学习时,可以通过在学习中包括某种形式的先验来保证,但是,并非所有离散的先验都可以从物理学中保留重要的结构。在本文中,我们将象征性动量神经网络(Symo)作为模型,作为模型,是针对不可分割的机械系统的机械设备的。这种配方的组合导致孔子限制在保留重要的几何结构,例如动量和符号形式,并从有限的数据中学习。此外,它只能从训练数据中从姿势中学习动态。我们通过开发一个隐式的根找到层来扩展Symos以在学习框架内包含各种积分器,该层导致端到端符号符合性动量神经网络(E2E-SYMO)。通过实验结果,使用摆和Cartpole,我们表明,这种组合不仅允许这些模型从有限的数据中学习,而且还为模型提供了保留符号形式并显示出更好的长期行为的能力。

With deep learning gaining attention from the research community for prediction and control of real physical systems, learning important representations is becoming now more than ever mandatory. It is of extreme importance that deep learning representations are coherent with physics. When learning from discrete data this can be guaranteed by including some sort of prior into the learning, however, not all discretization priors preserve important structures from the physics. In this paper, we introduce Symplectic Momentum Neural Networks (SyMo) as models from a discrete formulation of mechanics for non-separable mechanical systems. The combination of such formulation leads SyMos to be constrained towards preserving important geometric structures such as momentum and a symplectic form and learn from limited data. Furthermore, it allows to learn dynamics only from the poses as training data. We extend SyMos to include variational integrators within the learning framework by developing an implicit root-find layer which leads to End-to-End Symplectic Momentum Neural Networks (E2E-SyMo). Through experimental results, using the pendulum and cartpole, we show that such combination not only allows these models to learn from limited data but also provides the models with the capability of preserving the symplectic form and show better long-term behaviour.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源