论文标题
部分可观测时空混沌系统的无模型预测
Photochemical Runaway in Exoplanet Atmospheres: Implications for Biosignatures
论文作者
论文摘要
大约25亿年前,微生物学会利用大量太阳能与H $ _2 $ O减少CO $ _2 $,提取能源并产生O $ $ _2 $作为废物。 o $ _2 $从这种代谢过程中产生的生产是如此有力,以至于它使其光化学水槽饱和,使其达到“失控”条件并在大气中迅速积累,尽管其反应性。在这里,我们认为o $ _2 $可能不是唯一的:生命产生的多种气体可能会经历类似于o $ _2 $的“失控”效果。这种失控之所以发生,是因为大气在光化学上清洁痕量气体的能力通常是有限的。如果以超过此有限极限的速率产生,即使是反应性气体也可以迅速积累到高浓度并可能被检测到。绕行较小的较凉的星星,例如詹姆斯·韦伯(James Webb)空间望远镜(JWST)的主要目标的M矮人,由于与高质量恒星相比,由于其较低的紫外线排放,因此特别有利。作为一项说明性案例研究,我们表明,在具有h $ _2 $ -n $ -n $ _2 $大气和NH $ _3 $的净表面产生的宜居外行星上JWST仅在两个转移中被JWST检测到三个数量级和渲染。我们对此和其他气体的工作表明,在生物化学上可见的生产率上,可以很容易地检测到外部球星上的不同迹象。
About 2.5 billion years ago, microbes learned to harness plentiful solar energy to reduce CO$_2$ with H$_2$O, extracting energy and producing O$_2$ as waste. O$_2$ production from this metabolic process was so vigorous that it saturated its photochemical sinks, permitting it to reach "runaway" conditions and rapidly accumulate in the atmosphere despite its reactivity. Here we argue that O$_2$ may not be unique: diverse gases produced by life may experience a "runaway" effect similar to O$_2$. This runaway occurs because the ability of an atmosphere to photochemically cleanse itself of trace gases is generally finite. If produced at rates exceeding this finite limit, even reactive gases can rapidly accumulate to high concentrations and become potentially detectable. Planets orbiting smaller, cooler stars, such as the M dwarfs that are the prime targets for the James Webb Space Telescope (JWST), are especially favorable for runaway due to their lower UV emission compared to higher-mass stars. As an illustrative case study, we show that on a habitable exoplanet with an H$_2$-N$_2$ atmosphere and net surface production of NH$_3$ orbiting an M dwarf (the "Cold Haber World" scenario), the reactive biogenic gas NH$_3$ can enter runaway, whereupon an increase in the surface production flux of one order of magnitude can increase NH$_3$ concentrations by three orders of magnitude and render it detectable by JWST in just two transits. Our work on this and other gases suggests that diverse signs of life on exoplanets may be readily detectable at biochemically plausible production rates.