论文标题
H $ _ {2} $ ROVIBRATITATION LINES探测的分子云中的宇宙射线 - James Webb Space望远镜的观点
Cosmic rays in molecular clouds probed by H$_{2}$ rovibrational lines -- Perspectives for the James Webb Space Telescope
论文作者
论文摘要
子TEV能量处的宇宙射线(CRS)在分子云的化学和动力学演化中起着基本作用,因为它们控制了H $ _ {2} $的电离,分离和激发。它们的表征对于解释观测和理论模型的发展都是重要的。到目前为止,用于估算分子云中CR离子化率($ζ$)的方法具有多个局限性,这是由于所采用的化学网络中的不确定性所致。我们通过观察近近界波长的h $ _ {2} $的旋转振动过渡,将Bialy(2020)(2020)提出的方法估算为$ζ$,这主要受到次级CR电子的兴奋。结合星际CR繁殖和衰减的模型与预期的二级电子光谱的计算,并通过电子冲突更新了H $ _ {2} $激发横截面,我们得出了四个H $ _ {2} $ ROVIBLATICY的强度,可在密集,冷气中观察到可观察到(1-0)S(0)和(1-0)O(4)。提出的方法允许对给定的观察到的线强度和H $ _ {2} $列密度的$ζ$估计。我们还能够推断出撞击分子云的低能CR质子光谱的形状。我们提出了一个查找图和一个基于Web的应用程序,可用于约束星际CR质子光谱的低能光谱斜率。我们评论James Webb太空望远镜检测这些近红外H $ _ {2} $行的能力,这使得首次得出$ζ$在密集气体中的空间变化是可能的。除了对分子云的化学动力演化解释的影响之外,还可以测试星际介质中CR传播和衰减的竞争模型,并比较不同银河系中的CR光谱。
Cosmic rays (CRs) at sub-TeV energies play a fundamental role in the chemical and dynamical evolution of molecular clouds, as they control the ionisation, dissociation, and excitation of H$_{2}$. Their characterisation is important both for the interpretation of observations and for the development of theoretical models. The methods used so far for estimating the CR ionisation rate ($ζ$) in molecular clouds have several limitations due to uncertainties in the adopted chemical networks. We refine and extend the method proposed by Bialy (2020) to estimate $ζ$ by observing rovibrational transitions of H$_{2}$ at near-infrared wavelengths, which are mainly excited by secondary CR electrons. Combining models of interstellar CR propagation and attenuation with the calculation of the expected secondary electron spectrum and updated H$_{2}$ excitation cross sections by electron collisions, we derive the intensity of the four H$_{2}$ rovibrational transitions observable in dense, cold gas: (1-0)O(2), (1-0)Q(2), (1-0)S(0), and (1-0)O(4). The proposed method allows the estimation of $ζ$ for a given observed line intensity and H$_{2}$ column density. We are also able to deduce the shape of the low-energy CR proton spectrum impinging upon the molecular cloud. We present a look-up plot and a web-based application that can be used to constrain the low-energy spectral slope of the interstellar CR proton spectrum. We comment on the capability of the James Webb Space Telescope to detect these near-infrared H$_{2}$ lines, making it possible to derive for the first time spatial variation of $ζ$ in dense gas. Besides the implications for the interpretation of the chemical-dynamic evolution of a molecular cloud, it will be possible to test competing models of CR propagation and attenuation in the interstellar medium, as well as compare CR spectra in different Galactic regions.