论文标题
连接中子星二进制的速度和短伽马射线爆发
Linking the rates of neutron star binaries and short gamma-ray bursts
论文作者
论文摘要
据信,短伽马射线爆发是由二进制中子星(BNS)和中子星 - 黑洞(NSBH)合并产生的。我们使用BNS和NSBH合并率的当前估计值来计算通过每个通道产生的可观察到的短伽马射线爆发的比例。这使我们能够将BNS的合并率限制为$ \ MATHCAL {r} _ {\ rm {bns}} = 384^{+431} _ { - 213} {\ rm {\ rm {gpc} $ 16 \%$降低了第二种Ligo-Virgo引力波瞬时目录GWTC-2的不确定性。假设具有较大Lorentz因子的顶级帽子排放曲线,我们将BNS合并中产生的伽马射线爆发飞机的平均开口角限制为$ \ \ \ \ \ circ $。 We also measure the fraction of BNS and NSBH mergers that produce an observable short gamma-ray burst to be $0.02^{+0.02}_{-0.01}$ and $0.01 \pm 0.01$, respectively and find that $\gtrsim 40\%$ of BNS mergers launch jets (90\% confidence).我们预测给定不同建模假设的未来重力波检测的约束,包括BNS和NSBH喷气机不同的可能性。凭借$ 24 $ BNS和$ 55 $ NSBH的观察结果,预计在Ligo-Virgo-Kagra网络以设计敏感性运行后的六个月内,有可能限制以$ 10 \%$ $精确的价格限制BNS和NSBH合并的分数。在观察的一年之内,我们可以确定NSBH合并中发射的喷气机是否具有与BNS合并中发射的喷气机不同的结构,并排除了$ \ gtrsim 80 \%的二进制中子星星合并发射喷气机。我们讨论了未来限制对理解短伽马射线爆发和二元进化的物理学的含义。
Short gamma-ray bursts are believed to be produced by both binary neutron star (BNS) and neutron star-black hole (NSBH) mergers. We use current estimates for the BNS and NSBH merger rates to calculate the fraction of observable short gamma-ray bursts produced through each channel. This allows us to constrain merger rates of BNS to $\mathcal{R}_{\rm{BNS}}=384^{+431}_{-213}{\rm{Gpc}^{-3} \rm{yr}^{-1}}$ ($90\%$ credible interval), a $16\%$ decrease in the rate uncertainties from the second LIGO--Virgo Gravitational-Wave Transient Catalog, GWTC-2. Assuming a top-hat emission profile with a large Lorentz factor, we constrain the average opening angle of gamma-ray burst jets produced in BNS mergers to $\approx 15^\circ$. We also measure the fraction of BNS and NSBH mergers that produce an observable short gamma-ray burst to be $0.02^{+0.02}_{-0.01}$ and $0.01 \pm 0.01$, respectively and find that $\gtrsim 40\%$ of BNS mergers launch jets (90\% confidence). We forecast constraints for future gravitational-wave detections given different modelling assumptions, including the possibility that BNS and NSBH jets are different. With $24$ BNS and $55$ NSBH observations, expected within six months of the LIGO-Virgo-KAGRA network operating at design sensitivity, it will be possible to constrain the fraction of BNS and NSBH mergers that launch jets with $10\%$ precision. Within a year of observations, we can determine whether the jets launched in NSBH mergers have a different structure than those launched in BNS mergers and rule out whether $\gtrsim 80\%$ of binary neutron star mergers launch jets. We discuss the implications of future constraints on understanding the physics of short gamma-ray bursts and binary evolution.