论文标题

α-深概率推断(alpha-dpi):从系外行星到黑洞特征提取的有效不确定性定量

alpha-Deep Probabilistic Inference (alpha-DPI): efficient uncertainty quantification from exoplanet astrometry to black hole feature extraction

论文作者

Sun, He, Bouman, Katherine L., Tiede, Paul, Wang, Jason J., Blunt, Sarah, Mawet, Dimitri

论文摘要

推论在现代天文学研究中至关重要,在现代天文学研究中,隐藏的天体物理特征和模式通常是根据间接和嘈杂的测量来估算的。推断以观察到的测量为条件的隐藏特征的后部对于理解结果和下游科学解释的不确定性至关重要。后验估计的传统方法包括基于抽样的方法和变异推断。但是,对于高维反问题,基于抽样的方法通常速度很慢,而变异推断通常缺乏估计精度。在本文中,我们提出了Alpha-DPI,这是一个深度学习框架,首先使用Alpha-Divergence变异推断与生成神经网络配对,然后通过重新进行网络样品的重新投入到实现后的后样本,从而在后部学习近似后验。它从采样和变异推理方法继承了优势:它是快速,准确且可扩展到高维问题的。我们使用真实数据将方法应用于两个高影响的天文推理问题:系外星形标准和黑洞特征提取。

Inference is crucial in modern astronomical research, where hidden astrophysical features and patterns are often estimated from indirect and noisy measurements. Inferring the posterior of hidden features, conditioned on the observed measurements, is essential for understanding the uncertainty of results and downstream scientific interpretations. Traditional approaches for posterior estimation include sampling-based methods and variational inference. However, sampling-based methods are typically slow for high-dimensional inverse problems, while variational inference often lacks estimation accuracy. In this paper, we propose alpha-DPI, a deep learning framework that first learns an approximate posterior using alpha-divergence variational inference paired with a generative neural network, and then produces more accurate posterior samples through importance re-weighting of the network samples. It inherits strengths from both sampling and variational inference methods: it is fast, accurate, and scalable to high-dimensional problems. We apply our approach to two high-impact astronomical inference problems using real data: exoplanet astrometry and black hole feature extraction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源