论文标题

三维音场的基于张量的基础功能学习

Tensor-based Basis Function Learning for Three-dimensional Sound Speed Fields

论文作者

Cheng, Lei, Ji, Xingyu, Zhao, Hangfang, Li, Jianlong, Xu, Wen

论文摘要

基本功能学习是针对各种声学信号处理任务的有效三维(3D)音场(SSF)反转的垫脚石,包括海洋声学层析成像,水下目标定位/跟踪和水下通信。经典基础功能包括经验正交函数(EOF),傅立叶基函数及其组合。无监督的机器学习方法,例如K-SVD算法,最近已介入基础函数设计,比EOF显示出更好的表示性能。但是,现有方法不考虑将3D SSF数据视为三阶张量的基础功能学习方法,因此无法完全利用其中的3D交互/相关性。为了避免这样的缺点,基础功能学习与本文中的张量分解有关,这是最近多维数据挖掘的主要驱动器。特别是,提出了一个基于张量的基础功能学习框架,该框架可以包括经典基础函数(使用EOF和/或傅立叶基函数)作为其特殊情况。这为理解和表示3D SSF提供了统一的张量观点。使用南中国海3D SSF数据的数值结果表明,基于张量的基础功能的表现出色。

Basis function learning is the stepping stone towards effective three-dimensional (3D) sound speed field (SSF) inversion for various acoustic signal processing tasks, including ocean acoustic tomography, underwater target localization/tracking, and underwater communications. Classical basis functions include the empirical orthogonal functions (EOFs), Fourier basis functions, and their combinations. The unsupervised machine learning method, e.g., the K-SVD algorithm, has recently tapped into the basis function design, showing better representation performance than the EOFs. However, existing methods do not consider basis function learning approaches that treat 3D SSF data as a third-order tensor, and thus cannot fully utilize the 3D interactions/correlations therein. To circumvent such a drawback, basis function learning is linked to tensor decomposition in this paper, which is the primary drive for recent multi-dimensional data mining. In particular, a tensor-based basis function learning framework is proposed, which can include the classical basis functions (using EOFs and/or Fourier basis functions) as its special cases. This provides a unified tensor perspective for understanding and representing 3D SSFs. Numerical results using the South China Sea 3D SSF data have demonstrated the excellent performance of the tensor-based basis functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源