论文标题
在协调的6G空气空间非物体网络中的无缝和节能海上覆盖范围
Seamless and Energy Efficient Maritime Coverage in Coordinated 6G Space-Air-Sea Non-Terrestrial Networks
论文作者
论文摘要
将空间和空中网络与地面系统集成的非事物网络(NTN)是新兴第六代(6G)无线网络的关键领域。作为6G的一部分,NTN必须为包括智能手机,车辆,传感器,机器人和海上用户在内的各种设备提供普遍的连接性。但是,由于NTN的移动性高和部署,管理空间空中(SAS)NTN资源(即能源,功率和渠道分配)是一个主要挑战。在本研究中研究了用于节能资源分配的SAS-NTN的设计。目的是通过协作优化用户设备(UE)协会,电源控制和无人驾驶飞机(UAV)部署来最大化系统能效(EE)。鉴于无人机的有效载荷有限,这项工作着重于在满足EE要求的同时最大程度地降低无人机的总能源成本(轨迹和传输)。提出了混合成员非线性编程问题,然后开发了分解算法,并解决了每个问题。使用Bender分解(BD)分离二进制(UE关联)和连续(幂,部署)变量,然后使用Dinkelbach算法(DA)将分数编程转换为子问题中的等效溶解形式。标准优化求解器用于处理二进制变量的主问题的复杂性。乘数的交替方向方法(ADMM)算法用于解决连续变量的子问题。我们提出的算法提供了一个次优的解,模拟结果表明,所提出的算法比基线更好。
Non-terrestrial networks (NTNs), which integrate space and aerial networks with terrestrial systems, are a key area in the emerging sixth-generation (6G) wireless networks. As part of 6G, NTNs must provide pervasive connectivity to a wide range of devices, including smartphones, vehicles, sensors, robots, and maritime users. However, due to the high mobility and deployment of NTNs, managing the space-air-sea (SAS) NTN resources, i.e., energy, power, and channel allocation, is a major challenge. The design of a SAS-NTN for energy-efficient resource allocation is investigated in this study. The goal is to maximize system energy efficiency (EE) by collaboratively optimizing user equipment (UE) association, power control, and unmanned aerial vehicle (UAV) deployment. Given the limited payloads of UAVs, this work focuses on minimizing the total energy cost of UAVs (trajectory and transmission) while meeting EE requirements. A mixed-integer nonlinear programming problem is proposed, followed by the development of an algorithm to decompose, and solve each problem distributedly. The binary (UE association) and continuous (power, deployment) variables are separated using the Bender decomposition (BD), and then the Dinkelbach algorithm (DA) is used to convert fractional programming into an equivalent solvable form in the subproblem. A standard optimization solver is utilized to deal with the complexity of the master problem for binary variables. The alternating direction method of multipliers (ADMM) algorithm is used to solve the subproblem for the continuous variables. Our proposed algorithm provides a suboptimal solution, and simulation results demonstrate that the proposed algorithm achieves better EE than baselines.