论文标题

缺少应变类型的应变特异性疫苗功效的估计和假设检验,并应用于Covid-19疫苗试验

Estimation and Hypothesis Testing of Strain-Specific Vaccine Efficacy with Missing Strain Types, with Applications to a COVID-19 Vaccine Trial

论文作者

Heng, Fei, Sun, Yanqing, Gilbert, Peter B.

论文摘要

开发了统计方法,用于分析来自第3阶段的疫苗随机,安慰剂对照试验的临床和病毒遗传学数据。疫苗的疫苗疗效(VE)可预防由有限的SARS-COV-2有限遗传菌株之一引起的共证,可能因应变而有所不同。通过病毒遗传学评估差异VE的问题可以在竞争风险模型下提出,在竞争风险模型中,终点是病毒学确认的covid-19,而失败的原因是感染的SARS-COV-2基因型。应变特异性VE定义为减去原因特异性危害比(疫苗/安慰剂)。对于COVID-19 VE试验,Covid-19的时间是右审查的,并且很大一部分失败病例缺少感染病毒基因型。当故障时间受到正确的审查和失败的原因时,我们为应变特异性VE开发估计和假设测试程序,并导致失踪,重点是$ j \ ge 2 $离散的分类无序无序或有序的病毒基因型。分层的COX比例危害模型用于将特异性结果与解释变量联系起来。研究了逆概率加权完整案例(IPW)估计器和增强的反概率加权完整案例(AIPW)估计量。开发了假设检验,以评估该疫苗是否至少提供针对某些病毒基因型的特定疗效水平,以及VE在基因型之间是否有所不同,以调整协变量。通过模拟研究了所提出的测试的有限样本特性,并显示出良好的性能。为了准备真实的数据分析,将开发的方法应用于模仿Moderna Cove试验的伪数据集。

Statistical methods are developed for analysis of clinical and virus genetics data from phase 3 randomized, placebo-controlled trials of vaccines against novel coronavirus COVID-19. Vaccine efficacy (VE) of a vaccine to prevent COVID-19 caused by one of finitely many genetic strains of SARS-CoV-2 may vary by strain. The problem of assessing differential VE by viral genetics can be formulated under a competing risks model where the endpoint is virologically confirmed COVID-19 and the cause-of-failure is the infecting SARS-CoV-2 genotype. Strain-specific VE is defined as one minus the cause-specific hazard ratio (vaccine/placebo). For the COVID-19 VE trials, the time to COVID-19 is right-censored, and a substantial percentage of failure cases are missing the infecting virus genotype. We develop estimation and hypothesis testing procedures for strain-specific VE when the failure time is subject to right censoring and the cause-of-failure is subject to missingness, focusing on $J \ge 2$ discrete categorical unordered or ordered virus genotypes. The stratified Cox proportional hazards model is used to relate the cause-specific outcomes to explanatory variables. The inverse probability weighted complete-case (IPW) estimator and the augmented inverse probability weighted complete-case (AIPW) estimator are investigated. Hypothesis tests are developed to assess whether the vaccine provides at least a specified level of efficacy against some viral genotypes and whether VE varies across genotypes, adjusting for covariates. The finite-sample properties of the proposed tests are studied through simulations and are shown to have good performances. In preparation for the real data analyses, the developed methods are applied to a pseudo dataset mimicking the Moderna COVE trial.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源