论文标题
观察具有被困的离子量子模拟器的拓扑欧拉绝缘子
Observation of topological Euler insulators with a trapped-ion quantum simulator
论文作者
论文摘要
对称性在物质拓扑阶段的分类中起着至关重要的作用。尽管最近的研究已经建立了一个有力的框架来搜索和根据对称指标对拓扑阶段进行分类,但除了描述外,还有大量脆弱的拓扑。表征二维真实波函数拓扑的Euler类是一些重要特性的原型易碎拓扑,例如交叉节点的非亚伯式编织和高阶拓扑。但是,作为脆弱拓扑的最小模型,由三个频段组成的二维拓扑欧拉绝缘子仍然是实验中实施的重大挑战。在这里,我们在实验上实现了三频的哈密顿量,以模拟用被困的离子量子模拟器模拟拓扑的Euler绝缘子。通过量子状态层析成像,我们成功地评估了Euler类,Wilson Loop流量和纠缠光谱,以显示Hamiltonian的拓扑特性。我们还测量了最低能带的浆果阶段,说明存在四个受Euler类保护的交叉点。捕获量子量子模拟器的灵活性进一步使我们能够探测动态拓扑特征,包括Skyrmion-Antiskyrmion对和HOPF链接,并在Quench Dynamics的势头空间中。我们的结果表明,量子模拟技术的优势用于研究外来拓扑阶段,并为研究实验中脆弱的拓扑阶段开辟了新的途径。
Symmetries play a crucial role in the classification of topological phases of matter. Although recent studies have established a powerful framework to search for and classify topological phases based on symmetry indicators, there exists a large class of fragile topology beyond the description. The Euler class characterizing the topology of two-dimensional real wave functions is an archetypal fragile topology underlying some important properties, such as non-Abelian braiding of crossing nodes and higher-order topology. However, as a minimum model of fragile topology, the two-dimensional topological Euler insulator consisting of three bands remains a significant challenge to be implemented in experiments. Here, we experimentally realize a three-band Hamiltonian to simulate a topological Euler insulator with a trapped-ion quantum simulator. Through quantum state tomography, we successfully evaluate the Euler class, Wilson loop flow and entanglement spectra to show the topological properties of the Hamiltonian. We also measure the Berry phases of the lowest energy band, illustrating the existence of four crossing points protected by the Euler class. The flexibility of the trapped-ion quantum simulator further allows us to probe dynamical topological features including skyrmion-antiskyrmion pairs and Hopf links in momentum-time space from quench dynamics. Our results show the advantage of quantum simulation technologies for studying exotic topological phases and open a new avenue for investigating fragile topological phases in experiments.