论文标题

Zagier公式用于多个Zeta值及其奇数变体的基本证明

Elementary proofs of Zagier's formula for multiple zeta values and its odd variant

论文作者

Lai, Li, Lupu, Cezar, Orr, Derek

论文摘要

在本文中,我们提供了Zagier公式的基本证据,以涉及涉及Hoffman元素的多个Zeta值及其由于村上的奇数变体。 Zagier的公式是霍夫曼猜想证明的关键要素。此外,使用相同的方法,我们证明了村上的多个$ t $价值的公式。该公式对于证明棕色类型的结果至关重要,该结果断言每个多个Zeta值是$ \ Mathbb {q} $ - 多个$ 2 $ 2 $和$ 3 $的相同权重的多个$ t $值的线性组合。

In this paper, we give elementary proofs of Zagier's formula for multiple zeta values involving Hoffman element and its odd variant due to Murakami. Zagier's formula was a key ingredient in the proof of Hoffman's conjecture. Moreover, using the same approach, we prove Murakami's formula for multiple $t$-values. This formula is essential in proving a Brown type result which asserts that each multiple zeta value is a $\mathbb{Q}$-linear combination of multiple $t$-values of the same weight involving $2$'s and $3$'s.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源