论文标题

用于多模式成像计算机辅助诊断的基于相互注意的混合尺寸网络

Mutual Attention-based Hybrid Dimensional Network for Multimodal Imaging Computer-aided Diagnosis

论文作者

Dai, Yin, Gao, Yifan, Liu, Fayu, Fu, Jun

论文摘要

关于多模式3D计算机辅助诊断的最新著作表明,当3D卷积神经网络(CNN)带来更多参数和医学图像时,获得竞争性自动诊断模型仍然不足和具有挑战性。考虑到多模式图像和诊断准确性的兴趣区域的两种一致性,我们提出了一种新型的基于相互注意的混合维度网络,用于多模式3D医疗图像分类(MMNET)。混合尺寸网络将2D CNN与3D卷积模块集成在一起,以生成更深入,更有信息的特征图,并降低3D融合的训练复杂性。此外,可以在2D CNN中使用预训练的ImageNet模型,从而改善了模型的性能。立体注意力集中在3D医学图像中建立该地区丰富的上下文相互依赖性。为了改善多模式医学图像中病理组织的区域相关性,我们进一步设计了网络中的相互关注框架,以在不同图像模态的相似立体镜面区域建立区域一致性,从而提供了一种隐含的方式来指导网络专注于病理组织。 MMNET的表现优于以前的许多解决方案,并且在三个多模式成像数据集(即腮腺肿瘤(PGT)数据集,MRNET数据集和Prostatex数据集及其优势的三个多模式成像数据集(即,在三个多模式成像数据集)上的最新结果竞争。

Recent works on Multimodal 3D Computer-aided diagnosis have demonstrated that obtaining a competitive automatic diagnosis model when a 3D convolution neural network (CNN) brings more parameters and medical images are scarce remains nontrivial and challenging. Considering both consistencies of regions of interest in multimodal images and diagnostic accuracy, we propose a novel mutual attention-based hybrid dimensional network for MultiModal 3D medical image classification (MMNet). The hybrid dimensional network integrates 2D CNN with 3D convolution modules to generate deeper and more informative feature maps, and reduce the training complexity of 3D fusion. Besides, the pre-trained model of ImageNet can be used in 2D CNN, which improves the performance of the model. The stereoscopic attention is focused on building rich contextual interdependencies of the region in 3D medical images. To improve the regional correlation of pathological tissues in multimodal medical images, we further design a mutual attention framework in the network to build the region-wise consistency in similar stereoscopic regions of different image modalities, providing an implicit manner to instruct the network to focus on pathological tissues. MMNet outperforms many previous solutions and achieves results competitive to the state-of-the-art on three multimodal imaging datasets, i.e., Parotid Gland Tumor (PGT) dataset, the MRNet dataset, and the PROSTATEx dataset, and its advantages are validated by extensive experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源