论文标题

洛伦兹长度空间的胶合结构

Gluing constructions for Lorentzian length spaces

论文作者

Beran, Tobias, Rott, Felix

论文摘要

我们将公制空间合并的类似物引入了洛伦兹的预性空间的设置。这提供了一个非常通用的过程,可以从旧空间中构建新的空间。这项工作的主要应用是对CAT($ K $)空间的Reshetnyak胶合定理的类似物,该定理大致指出胶合与上曲率边界兼容。我们以(强烈的因果关系时间被视为Lorentzian长度空间,制定了定理。

We introduce an analogue to the amalgamation of metric spaces into the setting of Lorentzian pre-length spaces. This provides a very general process of constructing new spaces out of old ones. The main application in this work is an analogue of the gluing theorem of Reshetnyak for CAT($k$) spaces, which roughly states that gluing is compatible with upper curvature bounds. We formulate the theorem in terms of (strongly causal) spacetimes viewed as Lorentzian length spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源