论文标题

统一的问题产生持续的终身学习

Unified Question Generation with Continual Lifelong Learning

论文作者

Yuan, Wei, Yin, Hongzhi, He, Tieke, Chen, Tong, Wang, Qiufeng, Cui, Lizhen

论文摘要

问题生成(QG)是一项具有挑战性的自然语言处理任务,旨在根据给定的答案和上下文产生问题。现有的QG方法主要关注特定QG数据集的构建或培训模型。这些作品受两个主要限制的约束:(1)它们专用于特定的QG格式(例如,答案 - 萃取或多选择性QG),因此,如果我们想解决QG的新格式,则需要重新设计QG模型。 (2)仅在刚刚接受培训的数据集上实现了最佳性能。结果,我们必须为不同的QG数据集进行培训并保留各种QG模型,这是资源密集型且难以及的。 为了解决问题,我们根据终身学习技术提出了一个名为Unified-QG的模型,该模型可以在不同的数据集和格式上不断学习QG任务。具体来说,我们首先构建了一个格式转换编码,以将不同种类的QG格式转换为统一表示形式。然后,一种名为\ emph {strider}(\ emph {s} imph \ emph {t} y \ emph {r} egular \ emph {i} zed \ emph {i}在$ 4 $ QG的$ 4 $ QG格式(答案,答案,ABSTRACTITACH,MULTI-CHOICE和BOOLEAN QG)上进行了$ 8 $ QG数据集进行了广泛的实验,以证明我们方法的有效性。实验结果表明,当数据集和格式变化时,我们的统一QG可以有效并不断适应QG任务。此外,我们通过生成合成QA数据来验证单个受过训练的统一QG模型改善$ 8 $ QUACKENT(QA)系统的性能的能力。

Question Generation (QG), as a challenging Natural Language Processing task, aims at generating questions based on given answers and context. Existing QG methods mainly focus on building or training models for specific QG datasets. These works are subject to two major limitations: (1) They are dedicated to specific QG formats (e.g., answer-extraction or multi-choice QG), therefore, if we want to address a new format of QG, a re-design of the QG model is required. (2) Optimal performance is only achieved on the dataset they were just trained on. As a result, we have to train and keep various QG models for different QG datasets, which is resource-intensive and ungeneralizable. To solve the problems, we propose a model named Unified-QG based on lifelong learning techniques, which can continually learn QG tasks across different datasets and formats. Specifically, we first build a format-convert encoding to transform different kinds of QG formats into a unified representation. Then, a method named \emph{STRIDER} (\emph{S}imilari\emph{T}y \emph{R}egular\emph{I}zed \emph{D}ifficult \emph{E}xample \emph{R}eplay) is built to alleviate catastrophic forgetting in continual QG learning. Extensive experiments were conducted on $8$ QG datasets across $4$ QG formats (answer-extraction, answer-abstraction, multi-choice, and boolean QG) to demonstrate the effectiveness of our approach. Experimental results demonstrate that our Unified-QG can effectively and continually adapt to QG tasks when datasets and formats vary. In addition, we verify the ability of a single trained Unified-QG model in improving $8$ Question Answering (QA) systems' performance through generating synthetic QA data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源