论文标题
Ramannet:用于拉曼光谱分析的广义神经网络体系结构
RamanNet: A generalized neural network architecture for Raman Spectrum Analysis
论文作者
论文摘要
拉曼光谱法提供了分子的振动曲线,因此可用于唯一识别不同种类的材料。因此,这种指纹分子已导致拉曼光谱在医学脊椎动物,法医,矿物学,细菌学和病毒学等各个领域的广泛应用,尽管拉曼光谱数据量最近增加了,但在开发Raman Spectra分析的通用机器学习方法方面却没有任何巨大的努力。我们研究,实验和评估现有方法,并猜想,当前顺序模型和传统机器学习模型都不足以分析拉曼光谱。两者都有他们的特权和陷阱,因此我们试图将两全其美的最好的网络架构Ramannet融合在一起。 Ramannet对CNN中的不变性属性免疫,同时比传统的机器学习模型更好,以包括稀疏连通性。我们在4个公共数据集上进行的实验表明,与众多复杂的最新方法相比,Ramannet有可能成为Raman Spectra数据分析中的Defatso标准
Raman spectroscopy provides a vibrational profile of the molecules and thus can be used to uniquely identify different kind of materials. This sort of fingerprinting molecules has thus led to widespread application of Raman spectrum in various fields like medical dignostics, forensics, mineralogy, bacteriology and virology etc. Despite the recent rise in Raman spectra data volume, there has not been any significant effort in developing generalized machine learning methods for Raman spectra analysis. We examine, experiment and evaluate existing methods and conjecture that neither current sequential models nor traditional machine learning models are satisfactorily sufficient to analyze Raman spectra. Both has their perks and pitfalls, therefore we attempt to mix the best of both worlds and propose a novel network architecture RamanNet. RamanNet is immune to invariance property in CNN and at the same time better than traditional machine learning models for the inclusion of sparse connectivity. Our experiments on 4 public datasets demonstrate superior performance over the much complex state-of-the-art methods and thus RamanNet has the potential to become the defacto standard in Raman spectra data analysis