论文标题

在对称边缘多面体的伽马载体上

On the gamma-vector of symmetric edge polytopes

论文作者

D'Alì, Alessio, Juhnke-Kubitzke, Martina, Köhne, Daniel, Venturello, Lorenzo

论文摘要

我们从确定性和概率的角度研究了与$ H^*$ - 对称边缘多型的向量相关的$γ$ - 向量。在确定性方面,我们证明任何图表的$γ_2$都不是$γ_2$,并且当$γ_2= 0 $时完全表征了情况。后者还证实了Lutz和Nevo在对称边缘多面体领域中的猜想。在概率方面,我们表明大多数Erdős-rényi随机图的对称边缘多型的$γ$ - 向量几乎肯定是毫无疑问的,直到任何固定条目。这证明了GAL的猜想在这种情况下几乎肯定是渐近的,肯定是任意的单型三角剖分。

We study $γ$-vectors associated with $h^*$-vectors of symmetric edge polytopes both from a deterministic and a probabilistic point of view. On the deterministic side, we prove nonnegativity of $γ_2$ for any graph and completely characterize the case when $γ_2 = 0$. The latter also confirms a conjecture by Lutz and Nevo in the realm of symmetric edge polytopes. On the probabilistic side, we show that the $γ$-vectors of symmetric edge polytopes of most Erdős-Rényi random graphs are asymptotically almost surely nonnegative up to any fixed entry. This proves that Gal's conjecture holds asymptotically almost surely for arbitrary unimodular triangulations in this setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源