论文标题
欧几里得和仿射曲线重建
Euclidean and Affine Curve Reconstruction
论文作者
论文摘要
我们考虑使用规定的欧几里得或仿射曲线重建平面曲线的实际方面。这些曲率分别在特殊的欧几里得组和等等植物组下是不变的,并且在计算机视觉和形状分析中起着重要作用。我们讨论并实施了此类重建的算法,并估算了相对于其曲率相对于适当指标的曲率接近性的近距离曲线的估计。提供了几个说明性示例。
We consider practical aspects of reconstructing planar curves with prescribed Euclidean or affine curvatures. These curvatures are invariant under the special Euclidean group and the equi-affine groups, respectively, and play an important role in computer vision and shape analysis. We discuss and implement algorithms for such reconstruction, and give estimates on how close reconstructed curves are relative to the closeness of their curvatures in appropriate metrics. Several illustrative examples are provided.