论文标题

使用单通道信号特征在声传感器网络中麦克风实用程序估算

Microphone Utility Estimation in Acoustic Sensor Networks using Single-Channel Signal Features

论文作者

Günther, Michael, Brendel, Andreas, Kellermann, Walter

论文摘要

在具有分布式传感器的多通道信号处理中,选择要利用的观察到的传感器信号的最佳子集对于最大程度地提高算法性能和减少计算负载至关重要,这是至关重要的。在声学结构域中,信号互相关是量化麦克风信号(即麦克风实用程序)对阵列处理的有用性的自然选择,但其估计要求未编码的信号在节点之间同步并传递。在资源受限的环境(如声传感器网络)中,低数据传输速率通常会使所有观察到的信号传输到集中位置不可行,从而阻止信号互相关的直接估计。取而代之的是,我们采用记录信号的特征来估计单个麦克风信号的有用性。在此贡献中,我们对基于模型的麦克风实用程序估计方法进行了全面分析,该方法使用信号特征,作为替代方案,还提出了基于机器学习的估计方法,以识别最佳的传感器信号实用程序特征。使用模拟和记录的声学数据对两种方法的性能进行了实验验证,其中包括各种现实且实际相关的声学场景,包括移动和静态源。

In multichannel signal processing with distributed sensors, choosing the optimal subset of observed sensor signals to be exploited is crucial in order to maximize algorithmic performance and reduce computational load, ideally both at the same time. In the acoustic domain, signal cross-correlation is a natural choice to quantify the usefulness of microphone signals, i.e., microphone utility, for array processing, but its estimation requires that the uncoded signals are synchronized and transmitted between nodes. In resource-constrained environments like acoustic sensor networks, low data transmission rates often make transmission of all observed signals to the centralized location infeasible, thus discouraging direct estimation of signal cross-correlation. Instead, we employ characteristic features of the recorded signals to estimate the usefulness of individual microphone signals. In this contribution, we provide a comprehensive analysis of model-based microphone utility estimation approaches that use signal features and, as an alternative, also propose machine learning-based estimation methods that identify optimal sensor signal utility features. The performance of both approaches is validated experimentally using both simulated and recorded acoustic data, comprising a variety of realistic and practically relevant acoustic scenarios including moving and static sources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源