论文标题
在连续逻辑中明确可正常的组
Definably amenable groups in Continuous logic
论文作者
论文摘要
我们介绍了连续结构中的群体可确定的理由和极端可定义的舒适性的概念,并对它们进行了广泛的分析,与经典的一阶情况相似。我们使用定点属性表征这两个概念。我们表明,稳定和超级反应的组绝对是可正常的,并且证明,对于可定义的依赖理论的组,可确定的舒适性等同于存在F传奇类型的存在。最后,我们表明了一阶可正常的组的随机化非常明确。
We introduce the notions of definable amenability and extreme definable amenability for groups in continuous structures and conduct an extensive analysis of them, drawing parallels with the classical first-order case. We characterize both notions using fixed-point properties. We show that stable and ultracompact groups are definably amenable and prove that, for groups definable in dependent theories, definable amenability is equivalent to the existence of an f-generic type. Finally, we show the randomizations of first-order definably amenable groups are extremely definably amenable.