论文标题
使用参数解耦相校准的大面积双原子式陀螺仪的自我对齐
Self-Alignment of a Large-Area Dual-Atom-Interferometer Gyroscope Using Parameter Decoupled Phase Seeking Calibrations
论文作者
论文摘要
我们意识到一个马赫 - Zhhnder型的双原子互助计陀螺仪的陀螺仪长度为40厘米,干扰区域高达1.2 cm $^2 $。通过寻求重力效应后的ramsey-bord $ \急性{e} $干涉仪的相交来证明大规模分离的拉曼激光器的精确角度对齐,并通过将速度依赖性的Crosstalk相位移动与速度相关,并应用于构建Mach-Zehnster的速度相移。然后,通过精确对齐大尺度分离的拉曼激光器,基于双四个大面积马赫德原子干涉仪实现紧凑的惯性旋转传感器,在该原子中保持相干性很好,并且公共噪声被差异抑制。该传感器的灵敏度为$ 1.5 \ times10^{ - 7} $ rad/s/s/s/s/hz $^{1/2} $,稳定性为$ 9.5 \ times10^{ - 10} $ rad/s at 23000 s。通过调节对应于调节尺度因子的原子速度来实现绝对旋转测量。
We realize a Mach-Zehnder-type dual-atom-interferometer gyroscope with an interrogation arm of 40 cm length and the interference area up to 1.2 cm$^2$. The precise angular alignment of the large-scale separated Raman lasers is demonstrated by seeking the phase intersection of Ramsey-Bord$\acute{e}$ interferometers after the gravity effect is compensated and by decoupling the velocity dependent crosstalk phase shifts, and applied to build the Mach-Zehnder atom interferometer. Then a compact inertial rotation sensor is realized based on dual large-area Mach-Zehnder atom interferometers by precisely aligning the large-scale separated Raman lasers, in which the coherence is well preserved and the common noise is differentially suppressed. The sensor presents a sensitivity of $1.5\times10^{-7}$ rad/s/Hz$^{1/2}$, and a stability of $9.5\times10^{-10}$ rad/s at 23000 s. The absolute rotation measurement is carried out by adjusting the atomic velocity which corresponds to modulating the scale factor.