论文标题

奇异区域的精细结构最小化超曲面模型$ p $

Fine structure of the singular set of area minimizing hypersurfaces modulo $p$

论文作者

De Lellis, Camillo, Hirsch, Jonas, Marchese, Andrea, Spolaor, Luca, Stuvard, Salvatore

论文摘要

考虑一个面积最小化尺寸$ m $ dimens $ m $的当前模量$ m+m+m+1 $。我们证明,它的内部单数集是,最多可达到一组相对封闭的尺寸,最多是$ m-2 $,a $ c^{1,α} $ dimension $ m-1 $ submanifold,在本地,$ n \ leq p $ the当前的联接的$ n \ leq p $常规床单,每张张纸都用正值$ k_i $ $ k__i $ k_ i =这完成了对奇异区域的结构的分析,该区域最小化高空曲面Modulo $ p $,由J. Taylor以$ M = 2 $和$ P = 3 $发起,并由作者扩展到任意$ M $,以及Arxiv中的所有奇数P $:2105.08135。我们通过表明一组单数点承认平坦的爆炸至少有两个,我们可以解决剩下的案例。首先,我们通过将表皮数不平等与均匀最小化的分析结合得出结论,可以得出结论,以结论相应的同质性是整数是整数,我们证明了线性化问题中最小化的奇异性的结构结果。其次,我们完善了Almgren的爆炸程序,以证明当前的所有平坦奇异性一直是$ \ Mathrm {dir} $的奇异性 - 最小化限制。我们分析的一个重要组成部分是Minter和Wickramasekera在Arxiv中建立的单数点的平坦切线的独特性:2111.11202。

Consider an area minimizing current modulo $p$ of dimension $m$ in a smooth Riemannian manifold of dimension $m+1$. We prove that its interior singular set is, up to a relatively closed set of dimension at most $m-2$, a $C^{1,α}$ submanifold of dimension $m-1$ at which, locally, $N\leq p$ regular sheets of the current join transversally, each sheet counted with a positive multiplicity $k_i$ so that $\sum_i k_i = p$. This completes the analysis of the structure of the singular set of area minimizing hypersurfaces modulo $p$, initiated by J. Taylor for $m=2$ and $p=3$ and extended by the authors to arbitrary $m$ and all odd $p$ in arXiv:2105.08135. We tackle the remaining case of even $p$ by showing that the set of singular points admitting a flat blow-up is of codimension at least two in the current. First, we prove a structural result for the singularities of minimizers in the linearized problem, by combining an epiperimetric inequality with an analysis of homogeneous minimizers to conclude that the corresponding degrees of homogeneity are always integers; second, we refine Almgren's blow-up procedure to prove that all flat singularities of the current persist as singularities of the $\mathrm{Dir}$-minimizing limit. An important ingredient of our analysis is the uniqueness of flat tangent cones at singular points, recently established by Minter and Wickramasekera in arXiv:2111.11202.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源