论文标题

舒温格模型的分形状态

Fractal states of the Schwinger model

论文作者

Petrova, E. V., Tiunov, E. S., Bañuls, M. C., Fedorov, A. K.

论文摘要

Lattice Schwinger模型(SM)是1+1个尺寸中的QED的离散版本,是晶格量规理论的经过良好研究的测试台。在这里,我们研究了SM的分形特性。我们揭示了基态的自相似性,这使人们能够开发出一个经常性的程序来查找地面波函数并预测地基能量。我们提供了使用分形ANSATZ和自动化软件包进行分形图像处理的反复计算地面波函数的结果。在某些参数制度中,只有几个术语足以使我们的经常性程序预测接近数百个站点的确切确切能量的基态能量。我们的发现铺平了理解根据分形特性来计算多体波函数的复杂性的方法,并在凝结物质和高能晶格模型之间找到新的联系。

The lattice Schwinger model (SM), the discrete version of QED in 1+1 dimensions, is a well-studied test bench for lattice gauge theories. Here we study the fractal properties of the SM. We reveal the self-similarity of the ground state, which allows one to develop a recurrent procedure for finding the ground-state wave functions and predicting ground-state energies. We provide the results of recurrently calculating ground-state wave functions using the fractal ansatz and automized software package for fractal image processing. In certain parameter regimes, just a few terms are enough for our recurrent procedure to predict ground state energies close to the exact ones for several hundreds of sites. Our findings pave the way to understanding the complexity of calculating many-body wave functions in terms of their fractal properties as well as finding new links between condensed matter and high-energy lattice models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源