论文标题

RadiorChestra:通过优化波束形成,用户协会,速率选择和入院控制的联合优化,主动管理毫米波的自我折叠小细胞

RadiOrchestra: Proactive Management of Millimeter-wave Self-backhauled Small Cells via Joint Optimization of Beamforming, User Association, Rate Selection, and Admission Control

论文作者

Abanto-Leon, L. F., Asadi, A., Sim, G. H., Garcia-Saavedra, A., Hollick, M.

论文摘要

毫米波自我添加的小单元是下一代无线网络的关键组成部分。它们的密集部署将提高数据速率,降低潜伏期并在访问和回程网络之间启用有效的数据传输,从而通过光纤以前无法使用更大的灵活性。尽管具有很高的潜力,但运营密集的自我折磨网络最佳地是一个开放的挑战,尤其是无线电资源管理(RRM)。本文介绍了RadiorChestra,这是一个整体RRM框架,该框架对自我折磨网络进行建模并优化了波束形成,速率选择以及用户关联以及入学控制。该框架旨在解决实际挑战,例如基站的硬件限制(例如计算能力,离散率),对回程链接的适应性的需求以及干扰的存在。我们的框架被称为非convex混合企业非线性程序,该计划具有挑战性。为了解决这个问题,我们提出了三种算法,这些算法在复杂性和最优性之间提供了权衡。此外,我们得出上限和下限以表征系统的性能限制。我们在各种情况下评估了开发的策略,显示了在未来网络中部署实际自我支持的可行性。

Millimeter-wave self-backhauled small cells are a key component of next-generation wireless networks. Their dense deployment will increase data rates, reduce latency, and enable efficient data transport between the access and backhaul networks, providing greater flexibility not previously possible with optical fiber. Despite their high potential, operating dense self-backhauled networks optimally is an open challenge, particularly for radio resource management (RRM). This paper presents, RadiOrchestra, a holistic RRM framework that models and optimizes beamforming, rate selection as well as user association and admission control for self-backhauled networks. The framework is designed to account for practical challenges such as hardware limitations of base stations (e.g., computational capacity, discrete rates), the need for adaptability of backhaul links, and the presence of interference. Our framework is formulated as a nonconvex mixed-integer nonlinear program, which is challenging to solve. To approach this problem, we propose three algorithms that provide a trade-off between complexity and optimality. Furthermore, we derive upper and lower bounds to characterize the performance limits of the system. We evaluate the developed strategies in various scenarios, showing the feasibility of deploying practical self-backhauling in future networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源