论文标题
框架:自行车框架结构性能预测的汽车方法
FRAMED: An AutoML Approach for Structural Performance Prediction of Bicycle Frames
论文作者
论文摘要
本文展示了自动化机器学习(AUTOML)方法如何用作工程设计问题中有效的替代模型。为此,我们考虑了结构表现的自行车框架设计的具有挑战性的问题,并在回归和分类替代建模任务中展示了Automl的全面优势。我们还介绍了框架 - 基于全球从业者和爱好者设计的自行车的4500个自行车框架的参数数据集。伴随着这些框架设计,我们提供了十个结构性性能值,例如重量,负载下的位移以及使用有限元模拟为所有自行车框架设计计算的安全因子。我们提出了两个具有挑战性的测试问题:绩效预测回归问题和可行性预测分类问题。然后,我们系统地使用贝叶斯高参数调整和神经体系结构搜索系统地搜索最佳替代模型。最后,我们展示了最先进的汽车方法如何有效地对回归和分类问题有效。我们证明,所提出的自动模型的表现优于最强的梯度提升,而神经网络替代了通过贝叶斯优化通过贝叶斯优化确定的F1得分为24 \%的分类和减少平均绝对误差为12.5 \%的回归。我们的工作介绍了一个用于自行车设计从业人员的数据集,为替代建模研究人员提供了两个基准问题,并证明了汽车在机器学习任务中的优势。数据集和代码以\ url {http://decode.mit.mit.edu/projects/framed/}提供。
This paper demonstrates how Automated Machine Learning (AutoML) methods can be used as effective surrogate models in engineering design problems. To do so, we consider the challenging problem of structurally-performant bicycle frame design and demonstrate across-the-board dominance by AutoML in regression and classification surrogate modeling tasks. We also introduce FRAMED -- a parametric dataset of 4500 bicycle frames based on bicycles designed by practitioners and enthusiasts worldwide. Accompanying these frame designs, we provide ten structural performance values such as weight, displacements under load, and safety factors computed using finite element simulations for all the bicycle frame designs. We formulate two challenging test problems: a performance-prediction regression problem and a feasibility-prediction classification problem. We then systematically search for optimal surrogate models using Bayesian hyperparameter tuning and neural architecture search. Finally, we show how a state-of-the-art AutoML method can be effective for both regression and classification problems. We demonstrate that the proposed AutoML models outperform the strongest gradient boosting and neural network surrogates identified through Bayesian optimization by an improved F1 score of 24\% for classification and reduced mean absolute error by 12.5\% for regression. Our work introduces a dataset for bicycle design practitioners, provides two benchmark problems for surrogate modeling researchers, and demonstrates the advantages of AutoML in machine learning tasks. The dataset and code are provided at \url{http://decode.mit.edu/projects/framed/}.