论文标题
Plebańskiński解决方案具有动力扭转和非对象场
Plebański-Demiański solutions with dynamical torsion and nonmetricity fields
论文作者
论文摘要
我们在公制的重力理论框架中构建了Plebańskiński固定和轴对称溶液,并具有两个扩展和双重主零方向。从Podolský和Vrátný最近实现的宇宙学常数的新的改进形式开始,我们在存在宇宙常数的情况下扩展了这种形式,并得出了扭转和非对象张力量的物理来源提供的条件,在Weyl-Cartan cemetry中提供了在Weyl-Cartan segetry中提供动态贡献的条件。所得的黑洞构型的特征是该理论的Riemannian部门的质量,轨道角动量,加速度,螺母参数,宇宙常数和电磁电荷,以及扭转和非中型场的旋转和扩张电荷。前者受约束代表轴向对称性的参数的约束,除此之外,预计时空的几何形状将得到纠正。
We construct Plebański-Demiański stationary and axisymmetric solutions with two expanding and double principal null directions in the framework of Metric-Affine gauge theory of gravity. Starting from the new improved form of the metric with vanishing cosmological constant recently achieved by Podolský and Vrátný, we extend this form in the presence of a cosmological constant and derive the conditions under which the physical sources of the torsion and nonmetricity tensors provide dynamical contributions preserving it in Weyl-Cartan geometry. The resulting black hole configurations are characterised by the mass, orbital angular momentum, acceleration, NUT parameter, cosmological constant and electromagnetic charges of the Riemannian sector of the theory, as well as by the spin and dilation charges of the torsion and nonmetricity fields. The former is subject to a constraint representing a decoupling limit with the parameters responsible of axial symmetry, beyond which the geometry of the space-time is expected to be corrected.