论文标题
磁化旋转中旋转旋转的流体动力学 - $ 1/2 $链与均匀的dzyaloshinskii-moriya互动
Hydrodynamics of interacting spinons in the magnetized spin-$1/2$ chain with the uniform Dzyaloshinskii-Moriya interaction
论文作者
论文摘要
我们使用一种流体动力学方法来研究抗铁磁旋转的动态自旋敏感性-1/2 $ Heisenberg链,在存在外部磁场的情况下,具有均匀的Dzyaloshinskii-Moriya(DM)相互作用。我们发现,当磁场平行于DM轴时,横向(相对于磁场)旋转易感性(分别为三个)旋转激发模式(分别为三个)自旋激发模式。在所有情况下,旋转子之间的差距无关的反向散射相互作用都会在$ k = 0 $的激发光分支之间产生有限的能量分裂。此外,对于正交几何形状,两个下旋转分支在有限动量下避免了穿越,这取决于作用于Spinon的总磁场(外部和内部分子场的总和)。我们的近似分析计算与使用矩阵 - 产品状态(MPS)技术获得的数值结果很好地比较。我们对电子旋转共振实验的发现的物理后果将进行详细讨论。
We use a hydrodynamic approach to investigate dynamic spin susceptibility of the antiferromagnetic spin-$1/2$ Heisenberg chain with a uniform Dzyaloshinskii-Moriya (DM) interaction in the presence of an external magnetic field. We find that transverse (with respect to the magnetic field) spin susceptibility harbors two (respectively, three) spin excitation modes when the magnetic field is parallel (respectively, orthogonal) to the DM axis. In all cases, the marginally irrelevant backscattering interaction between the spinons creates a finite energy splitting between optical branches of excitations at $k = 0$. Additionally, for the orthogonal geometry, the two lower spin branches exhibit avoided crossing at finite momentum which is determined by the total magnetic field (the sum of the external and internal molecular fields) acting on spinons. Our approximate analytical calculations compare well with numerical results obtained using matrix-product-state (MPS) techniques. Physical consequences of our findings for the electron spin resonance experiments are discussed in detail.