论文标题

在伯努利环境中概括的多维兴奋随机步行

Generalized Many-Dimensional Excited Random Walk in Bernoulli Environment

论文作者

Alves, Rodrigo B., Iacobelli, Giulio, Valle, Glauco

论文摘要

我们研究了[Ann中引入的$ \ Mathbb {z}^d $上广泛激发随机步行(GERW)的扩展。概率。 40(5),2012年,[7]]撰写的Menshikov,Popov,Ramírez和Vachkovskaia。我们的扩展包括研究激发取决于随机环境的GERW版本。给定的$ p \在(0,1] $(模型的一个参数)中,每当该过程首次访问站点时,概率$ p $就会在给定方向上获得漂移(可能是单位领域的任何方向)。否则,概率$ 1-p $,它在$ d $中的of the a nore a Contere a consection a contery a contercity a contercity a contercity a contercity a contercity a contercity a contercity a contercity a concesity a contercity。 $ d $ - 与零均值的矢量。 $ P $ -GERW是I.I.D.(例如,对于在Bernoulli I.I.D.环境中进行激动的随机步行而满足的条件),我们还获得了大数字和中心限制定理的法律。

We study an extension of the generalized excited random walk (GERW) on $\mathbb{Z}^d$ introduced in [Ann. Probab. 40 (5), 2012, [7]] by Menshikov, Popov, Ramírez and Vachkovskaia. Our extension consists in studying a version of the GERW where excitation depends on a random environment. Given $p \in (0,1]$ (a parameter of the model) whenever the process visits a site for the first time, with probability $p$ it gains a drift in a given direction (could be any direction of the unit sphere). Otherwise, with probability $1-p$, it behaves as a $d$-martingale with zero-mean vector. Whenever the process visits an already-visited site, the process acts again as a $d$-martingale with zero-mean vector. We refer to the model as a GERW in Bernoulli environment, in short $p$-GERW. Under the same hypothesis of [7] (bounded jumps, uniform ellipticity), we show that the $p$-GERW is ballistic for all $p\in (0,1]$. Under the stronger assumptions that the increments of the regeneration times associated to the $p$-GERW are i.i.d. (condition which is satisfied, for example, for the excited random walk in a Bernoulli i.i.d. environment), we also obtain a Law of Large Numbers and a Central Limit Theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源