论文标题

自动驾驶汽车的合作意识的车道变更方法

A Cooperation-Aware Lane Change Method for Autonomous Vehicles

论文作者

Sheng, Zihao, Liu, Lin, Xue, Shibei, Zhao, Dezong, Jiang, Min, Li, Dewei

论文摘要

在复杂的动态交通环境中,自动驾驶汽车(AV)的车道更改是一项重要但具有挑战性的任务。由于保证安全性的困难以及高效率,AVS倾向于选择相对保守的车道变更策略。为了避免保守主义,本文提出了一种使用车辆之间相互作用的合作意识的车道变更方法。我们首先提出了一种交互式轨迹预测方法,以探索AV与其他AV之间的可能合作。此外,评估旨在对车道变更做出决定,在此方面考虑了安全,效率和舒适性。此后,我们提出了一种基于模型预测控制(MPC)的运动计划算法,该算法将AV的决策和周围车辆的交互行为纳入约束,以避免在车道更改期间发生碰撞。定量测试结果表明,与没有交互式预测的方法相比,我们的方法分别提高了AV和其他车辆的驾驶效率,分别提高了14.8 $ \%$和2.6 $ \%$,这表明对车辆相互作用的适当利用可以有效地降低AV的保守主义并促进AV与其他AV之间的合作。

Lane change for autonomous vehicles (AVs) is an important but challenging task in complex dynamic traffic environments. Due to difficulties in guarantee safety as well as a high efficiency, AVs are inclined to choose relatively conservative strategies for lane change. To avoid the conservatism, this paper presents a cooperation-aware lane change method utilizing interactions between vehicles. We first propose an interactive trajectory prediction method to explore possible cooperations between an AV and the others. Further, an evaluation is designed to make a decision on lane change, in which safety, efficiency and comfort are taken into consideration. Thereafter, we propose a motion planning algorithm based on model predictive control (MPC), which incorporates AV's decision and surrounding vehicles' interactive behaviors into constraints so as to avoid collisions during lane change. Quantitative testing results show that compared with the methods without an interactive prediction, our method enhances driving efficiencies of the AV and other vehicles by 14.8$\%$ and 2.6$\%$ respectively, which indicates that a proper utilization of vehicle interactions can effectively reduce the conservatism of the AV and promote the cooperation between the AV and others.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源