论文标题

Efimov的两个颗粒在半无限线上的效果

Efimov effect for two particles on a semi-infinite line

论文作者

Ohya, Satoshi

论文摘要

EFIMOV效应(从广义上讲)是指由于连续规模不变性触及离散量表不变性的多体结合状态的几何序列的开始。尽管最初在三个维度的三体问题中发现,但现在已知Efimov效应在各个维度的多体问题中出现。在这里,我们在一个维度上引入了两个相同玻色子的简单,可解决的玩具模型,该模型表现出Efimov效应。我们考虑玻色子驻留在半无限线上并通过成对的$δ$ function电位与特定位置依赖性耦合强度相互交互的情况,这使系统尺度不变。我们表明,对于足够有吸引力的相互作用,玻色子被束缚在一起,并出现了新的能量量表。该能级破坏了连续的比例不变性,以使其不变性不变,并导致两体结合状态的几何序列的发作。我们还研究了边界上的两体散射,并得出了表现出对数周期性的精确反射幅度。本文适用于对离散量表不变性感兴趣的学生和非专家。

The Efimov effect (in a broad sense) refers to the onset of a geometric sequence of many-body bound states as a consequence of the breakdown of continuous scale invariance to discrete scale invariance. While originally discovered in three-body problems in three dimensions, the Efimov effect has now been known to appear in a wide spectrum of many-body problems in various dimensions. Here we introduce a simple, exactly solvable toy model of two identical bosons in one dimension that exhibits the Efimov effect. We consider the situation where the bosons reside on a semi-infinite line and interact with each other through a pairwise $δ$-function potential with a particular position-dependent coupling strength that makes the system scale invariant. We show that, for sufficiently attractive interaction, the bosons are bound together and a new energy scale emerges. This energy scale breaks continuous scale invariance to discrete scale invariance and leads to the onset of a geometric sequence of two-body bound states. We also study the two-body scattering off the boundary and derive the exact reflection amplitude that exhibits a log-periodicity. This article is intended for students and non-specialists interested in discrete scale invariance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源