论文标题
纠缠一段扭曲
Entanglement Harvesting with a Twist
论文作者
论文摘要
宇宙审查猜想的结果之一是,任何拓扑结构最终都会崩溃到一组黑洞的地平线内,因此,外部经典观察者将无法探测它。但是,保留在地平线之外的单个两级量子系统(UDW检测器)已被证明可以通过其不同的响应速率区分黑洞及其相关的Geon对应物。在这里,我们通过考虑该时空中量子标量场的真空状态的纠缠结构,并将其与BTZ黑洞的差异如何,从而扩展了对$ \ mathbb {rp} _2 $ geon之外的量子真空的研究。采用纠缠收集方案,将场纠缠换成一对UDW探测器,我们发现Geon的经典隐藏拓扑可以在两个空间中收获的纠缠量有明显的差异,以获得足够小的质量。在这个制度中,我们发现BTZ时空中具有较小能量差距的探测器更多。但是,随着能量差距的增加,探测器在geon时空中收获的纠缠更多。交叉处的能量间隙取决于黑洞的质量,该质量发生在较低质量的较低值下。这也影响了纠缠阴影的大小,即探测器无法收获纠缠的地平线附近的区域。小间隙探测器在Geon时空中会经历较大的纠缠阴影,而对于大间隙检测器,BTZ时空中的阴影更大。
One consequence of the cosmic censorship conjecture is that any topological structure will ultimately collapse to within the horizons of a set of black holes, and as a result, an external classical observer will be unable to probe it. However a single two-level quantum system (UDW detector) that remains outside of the horizon has been shown to distinguish between a black hole and its associated geon counterpart via its different response rates. Here we extend this investigation of the quantum vacuum outside of an $\mathbb{RP}_2$ geon by considering the entanglement structure of the vacuum state of a quantum scalar field in this spacetime, and how this differs from its BTZ black hole counterpart. Employing the entanglement harvesting protocol, where field entanglement is swapped to a pair of UDW detectors, we find that the classically hidden topology of the geon can have an appreciable difference in the amount of entanglement harvested in the two spacetimes for sufficiently small mass. In this regime, we find that detectors with a small energy gap harvest more entanglement in the BTZ spacetime; however as the energy gap increases, the detectors harvest more entanglement in a geon spacetime. The energy gap at the crossover is dependent on the black hole mass, occurring at a lower values for lower masses. This also impacts the size of the entanglement shadow, the region near the horizon where the detectors cannot harvest entanglement. Small gap detectors experience a larger entanglement shadow in a geon spacetime, whereas for large gap detectors the shadow is larger in a BTZ spacetime.